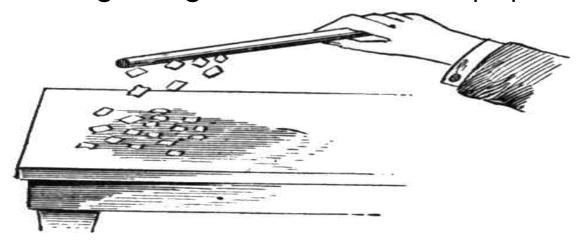

<u>Demonstration 1: The Can</u>	<u>Demonstration 2: Paper Confetti</u>
Picture:	Picture: INB Page 57
Explanation:	Explanation:
<u>Demonstration 3: Single Balloon</u>	<u>Demonstration 4: Hanging Balloons</u>
Picture:	Picture:
Explanation:	Explanation:

DEMONSTRATION 1: THE CAN

1.Place a static charge on the rod using the fur. This gives the rod a negative charge. With the can (foil) on its side, see if you can get the can to move without touching it.



2.Draw a picture of the charge distribution on on the rod and can (foil).

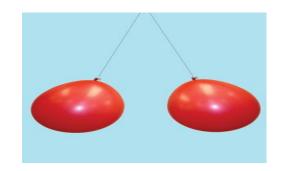
3.The can STAYS neutral! Why does the can move if it is neutral?

DEMONSTRATION 2: PAPER CONFETTI

- 1.Charge up the rod using the fur. See how many paper confetti pieces we can get to stick to the rod.
- 2.Draw a charge diagram of the rod and paper confetti.

3. The rod gets a negative net charge from the fur. The confetti, which are insulators, STAY neutral! Why do they stick?

DEMONSTRATION 3: SINGLE BALLOON


- 1. Let's see if we can get the balloon to stick to you or to stick to the wall/ cabinet.
- 2.Draw a picture of the charge distribution on the balloon and wall.

3. Explain what happened and why.

BALLOON

- 1. Use fur to charge up the balloons.
- 2. With a little bit of charge put on both balloons, they repel each other. Draw a charge diagram on the same picture.

3. We can also charge up the rod and see how that effects the situation. If the rod has a net negative charge, what charge must the balloons have?