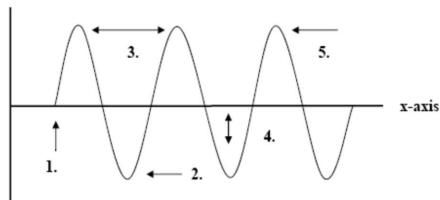
Name:	Date:	Hour:	1	2	3	4	5	6

Anatomy of a Wave Practice

Objective: Identify the parts of a wave and draw your own diagrams of waves.

Part 1


In the diagram below, identify the parts of a wave by using the provided definitions.

#___ = **crest** The highest point of the wave above the line of origin.
#___ = **trough** The lowest point of the wave below the line of origin.

#___ = line of origin Signifies the original position of the medium.
#___ = wavelength The distance between two consecutive crests.

#____ = **amplitude** The distance from the line of origin to a crest or trough of a wave.

Part 2

Use the back side of this sheet for graph paper, draw four different waves with the following measurements.

Label the parts and include the measurements. 1 cm= 3 boxes on graph paper

wave #	crest	trough	wavelength
1	1 cm	1 cm	1 cm
2	3 cm	3 cm	2 cm
3	.5 cm	.5 cm	3 cm
4	2 cm	2cm	.5 cm

Concluding question: State which wave you think has the *highest frequency* and which might have the *lowest frequency*. What can we conclude is the relationship between frequency and wavelength?