Sectors

Area of a Sector:

Find the area of the shaded sector XOY in terms of pi.

This happens to be $\frac{1}{4}$ of a circle, but how could we find area for any sector of a circle (even ones that aren't "perfect parts" of a circle)? Remember: $\frac{Arc Measure}{360} = \frac{90}{360} = \frac{1}{4}$ Sector Area = $\frac{Arc Measure}{360}$ Area $\frac{Arc Measure}{360}$

Find the area of the shaded sector XOY if its measure is 240° and the circle has a radius of 15 cm. Leave in terms of pi.

$$A_{XOY} = \frac{240}{360} \cdot \pi(15)^3 = \frac{2}{3} \cdot 225 \cdot \pi$$

$$A_{XOY} = 150 \cdot \pi \text{ cm}^2$$

Find the area of the shaded sector POY if the measure of PXY is 290° and the circle has a diameter of 46 cm. Leave in terms of pi

$$A_{POY} = \frac{70^{\circ}}{360^{\circ}} \cdot 17(23)^{2}$$

$$= \frac{7}{360^{\circ}} \cdot 529 \text{ fr}$$

$$A_{POY} = \frac{3703}{36} \text{ fr} \text{ cm}^{2}$$