

Inscribed Angles

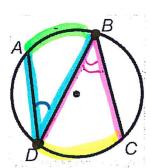
and the second	(correct)		
An inscribed	_ angle is an angle with its	vertex	on the circle and
whose sides intersect	the circle. The	arc	_ formed by the
intersection of the two	of the angle	and the circle is	called an
interepted	are.		
	Intercepted		hords with
Verten	Are	one	Common point.

Inscribed Angle

For the given circle, name the inscribed angle and its intersected arc.

Inscribed angle: LADB

Inscribed angle: \angle COD


Intercepted arc:

Intercepted arc:

For the given circle, name each inscribed angle and its intersected arc. Mark both with the same color.

LDBC

The Inscribed Angle Theorem

Inscribed

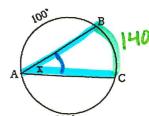
The measure of any inscribed angle is_ intercepted arc.

the measure of its

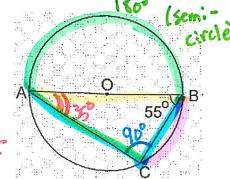
The measure of an intercepted

_arcis_twice

_ the measure of the


pass through the end points

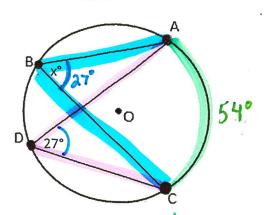
of the arc.


Solve for x.

360 120 -100

140°

For the given circle, find each:


a.) m <ACB

Verlex

b.) m BC

1

Solve for x.

Since both inscribed

amles intercept the

Same arc, they are Conquent.

(SA)

X=2: