Algebra 1 Semester 2 Study Guide Part 1

Exponential Functions – HSA -SSE.A.1, HSA -REI.D.10, HSF -IF.B.5, HSF -IF.C.7, HSF -IF.C.8, HSF -IF.C.9, HSF-LE.A.1, HSF-LE.B.5

1. Sketch a grap	oh that show	s exponential:
a) Growth	1	b) Decay

For # 2 - 6, tell if:

- a) the equation represents growth or decay
- b) the growth or decay factor
- c) the percent of growth or decay
- d) the initial value
- e) graph the function
- f) tell the domain and range

on graphs

2.
$$y = 35(0.57)^x$$

3.
$$y = 1.3^{x}$$

$$4. y = 1.4(1.03)^{x}$$

5.
$$y = 4.5(0.95)^{x}$$

6.
$$y = 8(3)^x$$

- 7. Of #2 6, which shows the greatest growth? #6
- 8. The population in 2012, of a small Upper Peninsula town was approximately 2,500. The following equation can be used to model the change, g(t), over time, t, in years: $g(t) = 2500(1.15)^t$
 - a) What is the percent of growth or decay per year in this town? 15% growth
 - b) Is the population increasing or decreasing? Explain how you know. Increasing; base >1
 - c) Where will the graph of the function cross the y-axis? Explain how you know. 2,500; initial value
 - d) What does the y- intercept indicate in the context of the problem? Initial population
 - e) How would an increase in the percentage rate of growth affect the graph of the function? Steeper faster
 - f) What will be the predicted population in 2020? 7,647 people
- 9. A certain stock is worth \$42 at the beginning of the day. Every hour the stock goes down by 5%.
 - a) Can this information be represented by exponential growth or decay? Explain. Decay; Stock is going down
 - b) What is the growth or decay factor for this information? Explain how you found it. . 45; 1-5
 - c) Write an equation to model this information. Explain what each part means. +(x)= 43(.95)*
 - d) How much will the stock be worth in 8 hours? Show work. f(3) = 43.86
- 10. A dust bunny gathers dust at a rate of 11% per week. The dust bunny originally weighs 0.7 oz.
 - a) Write a function that represents the weight of the dust bunny at a given time. Use x for weeks and y for the weight of the dust bunny. $f(x) = 0.7(1.11)^{x}$
 - b) Find the weight of the dust bunny after 7 weeks.

Part 2

Quadratic Functions - HSF-IF.B.4, HSF-IF.C.7, HSF-IF.C.9, HSA-REI.D.10, HSA-SSE.A.1, HSA-SSE.B.3, HSA-APR.B.3, HSF-IF.C.8, HSA-REI.B.4, HSA-REI.D.10

For 1 - 4,

- a) find the y-intercept(s)
- b) find the x-intercept(s)/zero(s)/root(s)/solution(s)
- c) identify the vertex
- d) is the vertex a maximum or a minimum
- e) identify the axis of symmetry

Factor each expression for 5-8.

5.
$$6x^5 + 3x^4 - 9x^2$$

6.
$$49r^2 - 14r^2$$

7.
$$2v^2 - 2v - 112$$

8.
$$12d^2 - 8d + 1$$

5. $6x^5 + 3x^4 - 9x^2$ 6. $49r^2 - 144$ 7. $2y^2 - 2y - 112$ 8. $12d^2 - 8d + 1$ 3 $\chi^2(3\chi^3 + \chi^3 - 3)$ (7 $\chi^4 + 13\chi^2 - 13\chi^3 + 12\chi^3 - 3\chi^3 + 12\chi^3 + 12\chi^3$

The following is a graph of the path of a rocket after it is launched.

- 9. Identify and explain the real world meaning of the following points. Height is in feet and time is in seconds.
 - a) Vertex (4.5, 31) b) x-intercept(s) $0 \nmid 9$ c) y-intercept(s)
- 10. How long does it take for the rocket to reach the ground?

9 seconds

For 11 - 17, graph each quadratic function.

11.
$$y = 3x^2 - 2x - 5$$

12.
$$y = -x^2 + 4$$

13.
$$v = x^2 + 4x - 5$$

11.
$$y = 3x^2 - 2x - 5$$
 12. $y = -x^2 + 4$ 13. $y = x^2 + 4x - 5$ 14. $y = (x - 5)(x + 2)$

15.
$$y = \frac{1}{3}(x-1)^2 - 4$$
 16. $y = -2(x+5)^2$ 17. $y = (x+1)(x+6)$

16.
$$y = -2(x+5)^2$$

17.
$$y = (x+1)(x+6)$$

- Explain what can be determined by looking at each form of a quadratic function.
- a) Standard $y = ax^2 + bx + c$ b) Factored y = (x-a)(x-b)

b) Factored
$$y = (x-a)(x-b)$$

c) Vertex
$$y = a(x-h)^2 + k$$

maximin vertex(h,k)

- 19. Tell the x-intercept(s)/zero(s)/factor(s)/solution(s) of:
 - a) f(x) = (x+7)(x-3) -1 \(\begin{array}{c} 3 \\ -1 \end{array} \end{array}

b)
$$f(x) = 2x^2 + 5x - 3$$

c)
$$f(x) = x(2x+5)$$
 0 \ - \ - \ - \ \ 2

e)
$$f(x) = x^2 - x - 12 - 3 + 4$$

20. Tell the vertex of each, then tell if the vertex is a maximum or a minimum:

a)
$$f(x) = -5(x+3)^2 - 4$$
 (-3, -4) max
b) $f(x) = 2x^2 - 4x + 1$ (1, -1) min
c) $f(x) = 3x^2 + 6x - 5$ (-1, -8) min
d) $f(x) = -(x-3)^2$ (3, 0) max

b)
$$f(x) = 2x^2 - 4x + 1$$

c)
$$f(x) = 3x^2 + 6x - 5$$
 (-1,-8) min

d)
$$f(x) = -(x-3)^2$$
 (3.0) max

e)
$$f(x) = x^2 - 1$$
 (O₁-1) min

f)
$$f(x) = (x-5)^2 + 3(5,3)$$
 min

- 21. Tell the x- and y-intercepts of each:
 - a) $f(x) = x^2 4x + 2$ X:.586 & 3.41 Y:2
 - b) $f(x) = x^2 + 6x 16$ x: $2 \xi 8$ Y:-16 c) $f(x) = x^2 2x 24$ x: $6 \xi 4$ Y:-24
 - c) $f(x) = x^2 2x 24 \times 6 4$
- 22. a) What is the vertex of $g(x) = (x-3)^2 + 2$? (3,3)

Which of the following has the same vertex as g(x)? Defend each answer.

- b) $h(x) = -2(x-3)^2 2$
- c) $f(x) = (x + 3)^2 + 2$
- (d) $p(x) = x^2 6x + 11$
- e) q(x) = (x-3)(x+2)

Determine the number of solutions for the following quadratic functions in questions 23 and 24.

23.

24.

For 25 - 33, round answers to the nearest hundredth if necessary.

- 25. Find the roots of $4x^2 15 = 9$. **3.45 \ -3.45**
- 26. Find the zeros of $z^2 + 6z 27 = 0$. $-9 \ge 3$
- 27. Solve the equation $c^2 3c = 0$. \bigcirc
- 28. Solve $10x^2 7x = 33$. -1.5 \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \)
- 29. Find all of the zeros of $2x^2 + 15x + 28 = 0$. -4
- 30. Find the roots of $2x^2 7x 13 = 0$. -1.34 4 4.84
- 31. Solve $6x^2 + 13x + 6 = 0$. $-312 + -313 \circ -1.54 -.67$
- 32. Find the solutions to $2x^2 + 3x 7 = 0$. $-2.77 \ge 1.27$
- 33. Solve $2x^2 + 4x 6 = 0$. -3 \ \

Part 3

SLOT - HSN-RN.A.2, HSN-RN.B.3, HSA -REI.A.1, HSA -REI.B.3, HSA -APR.A.1, HSN-Q.A.1, HSA-CED.A.4 Find the sum, difference or product of each for 1-12.

- 1. $(4x^2 5x) 2x(2x^2 3x + 3)^{-4}x^3 + 10x^3 11x$ 2. $(3p 7)(3p + 4)^{-4}p^3 4p 38$ 3. $(6 3x^2) + (x^3 x + 5)^{-3}x^3 x + 11$ 4. $-2n^3(n^2 3n + 4) 2n^{-5} + 10n^4 8n^3$ 5. $(2a^2 + 4c^3)^2 + 10x + 3$ 6. $(n^4 + 2n 1) + (5n n^4 4)$ 1n 5 7. $(4x + 3)(2x + 1)^{-3}x^3 + 10x + 3$ 8. $(4h^2 5)(5h^2 6)^{-3}x^3 44$

- 9. $(2x^3 + 4x^2 + 1)(x 4)$
- 11. $(2x^2-3x-3)-(-6x^2+3x+8)$ 8x3-(0x-1) 12. $(2x^3+4x^2+1)(x-4)$ 2x4-(1x3-16x4x-4)
- 13. a) Write an expression for the perimeter of the figure below.
 - b) Write an expression for the area of the figure below.

14. A 65" television is named by the length of the diagonal of the television.

The Pythagorean Theorem can be used to compare the dimensions to the diagonal: $a^2 + b^2 = c^2$. You want to know if your new tv will fit in your existing cabinet. Rearrange the formula to solve for 0 = 1(3-P3 height (a).

- 15. In accounting, a company's gross profit rate measures how well the company controls cost of goods sold to maximize gross profit. The gross profit rate, P, is calculated using the formula $P = \frac{S - C}{S}$, where S is the net sales and C is the cost of goods sold. Rearrange the formula to solve for the cost of goods sold C . C=-SP+5
- 16. The surface area, S , of a right circular cylinder is calculated using the formula $S=2\pi r^2+2\pi rh$, where r is the radius of the cylinder and h is the height of the cylinder. Rearrange the formula to solve for height (h).
- 17. If F denotes a temperature in degrees Fahrenheit and C is the same temperature measured in degrees Celsius, then F and C are related by the equation $F = \frac{9}{5}C + 32$. Rewrite this equation to solve for C in terms of F.