Identify the vertex of each graph. Tell whether it is a minimum or a maximum.

5) Use the graphing calculator to graph each of the equations below. Then sketch each graph on graph paper. Label each vertex.

a)
$$y = x^2$$

b)
$$y = 2x^{2}$$

c)
$$y = -2x^2$$
 d) $y = \frac{1}{2}x^2$

d)
$$y = \frac{1}{2} x^2$$

6) What is the shape of each graph in #5?

7) Which graph is widest? Which graph is narrowest?

8) Fill in the table below for the first four equations.

Equation	Does the curve open	Vertex	Is the vertex a maximum or
	up or down?		a minimum?
y = x 2			
y = 2x2			
y = -2x2			
$y = \frac{1}{2} \times^2$	*		
$y = x^2 + 3$			
$y = -x^2 - 3$			

9) Use the graphing calculator to graph each of the equations below. Then sketch each graph on graph paper.

a)
$$y = x^2 + 3$$

b)
$$y = -x^2 - 3$$

10) Fill in the table above for the equations from #9. What happened to the vertex when a constant was added to or subtracted from the x2 term?