I cannot help it - in spite of myself, infinity torments me. - Alfred de Musset

TO INFINITY AND BEYOND !!!!!

Important theorem: $\lim_{x\to\infty} \frac{1}{x} = 0$

Limits Involving Infinity

(Principle of Dominance)

- 1. $\lim_{x \to \infty} \frac{x^a}{x^b}$, if a < b. Then, $\lim_{x \to \infty} \frac{1}{x^b} = 0$. (Look for the highest degrees/powers of x)

 2. $\lim_{x \to \infty} \frac{Cx^a}{Dx^b}$, if a = b. Then, $\lim_{x \to \infty} \frac{C}{D}$. (Look for the highest degrees/powers of x)
- 3. $\lim_{x\to\infty} \frac{x^a}{x^b}$, if a > b. Then, limit $= \infty$ or $-\infty$. (Look for the highest degrees/powers of x and check the sign of ∞ by substituting with a large x-value.)

Problems:

1. $\lim_{x \to \infty} 7 + \frac{1}{3x} - \frac{2}{x^2}$	$2. \lim_{x \to -\infty} \frac{4x + 8}{5x}$	$3. \lim_{x \to \infty} \frac{3x - 1000}{x + 100}$	$4. \lim_{x \to -\infty} \frac{5x+5}{7x^2+1}$
$5. \lim_{x \to \infty} \frac{5x^2 + 2}{4x^2 + 7}$	6. $\lim_{x \to -\infty} \frac{3x^3 + 5}{5x^2 + 1}$	$7. \lim_{x \to \infty} \frac{2x^2 - 4x}{x + 1}$	8. $\lim_{x \to -\infty} \frac{2x^2 - 4x}{x + 1}$
$9. \lim_{x \to \infty} \frac{3x^3 + 2}{5x^2 - 1}$	10. $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x^2 - 1}$	11. $\lim_{x \to \infty} \frac{x^2 + 2}{x - 555}$	12. $\lim_{x \to \infty} \frac{3 - 2x}{3x^3 - 1}$
13. $\lim_{x \to \infty} \frac{3 - 5x}{3x - 1}$	14. $\lim_{x \to \infty} \frac{3 - 2x^2}{3x - 1}$	15. $\lim_{x \to \infty} \frac{6x^2 - 2x - 1}{2x^2 + 3x + 2}$	16. $\lim_{x \to \infty} \frac{3x^3 + 2}{2x^2 - 9x^3 + 7}$
$17. \lim_{x \to \infty} \frac{x}{x^2 - 1}$	18. $\lim_{x \to -\infty} \frac{8x^2 + 3x}{2x^2 - 1}$	19. $\lim_{x \to \infty} 10 - \frac{2}{x^2}$	$20. \lim_{x \to -\infty} 4 + \frac{3}{x}$
$21. \lim_{x \to \infty} \frac{5x^2}{x+3}$	22. $\lim_{x \to \infty} \frac{1}{2} x - \frac{4}{x^2}$	$23. \lim_{x \to \infty} \frac{\sin x}{x}$	$24. \lim_{x \to \infty} \frac{\cos 2x}{3x}$

Answers:

1) 7	$2)\frac{4}{5}$	3) 3	4) 0	5) $\frac{5}{4}$	6) −∞
7) ∞	8) – ∞	9) ∞	10) $\frac{3}{4}$	11) ∞	12) 0
$13)-\frac{5}{3}$	14) −∞	15) 3	16) $\frac{-1}{3}$	17) 0	18) 4
19) 10	20) 4	21) −∞	22) ∞	23. 0	24. 0