Name	Date	

- 1. Represent the following expressions with disks, regrouping as necessary, writing a matching expression, and recording the partial products vertically.
 - a. 3×24

tens	ones

b. 3×42

hundreds	tens	ones

c. 4×34

hundreds	tens	ones

Lesson 7:

Use place value disks to represent two-digit by one-digit multiplication.

- 2. Represent the following expressions with disks, regrouping as necessary. To the right, record the partial products vertically.
 - a. 4×27

tens	ones
	tens

b. 5×42

hundreds	tens	ones

3. Cindy says she found a shortcut for doing multiplication problems. When she multiplies 3 × 24, she says, "3 × 4 is 12 ones, or 1 ten and 2 ones. Then, there's just 2 tens left in 24, so add it up, and you get 3 tens and 2 ones." Do you think Cindy's shortcut works? Explain your thinking in words, and justify your response using a model or partial products.

Lesson 7:

Use place value disks to represent two-digit by one-digit multiplication.

