HONORS Solving Polynomials "Quest" Review Guide – Do all work on a separate piece of paper!

DIRECTIONS: Solve the following polynomials by the graphing method. Check each of your zeros algebraically to verify that they are solutions to the polynomial.

1)
$$x^3 - 4x^2 - 7x = -10$$
 2) $4x^3 - 8x^2 + 4x = 0$

2)
$$4x^3 - 8x^2 + 4x = 0$$

3)
$$2x^3 + 5x^2 = 7x$$

4)
$$2x^4 - 5x^3 - 3x^2$$

5)
$$4x^3 = 4x^2 + 3x$$

- 6) State the formula for the SUM OF CUBES.
- 7) State the formula for the DIFFERENCE OF CUBES.

***Remember that you need to have both the sum and difference of cubes formulas memorized for tomorrow; along with the quadratic formula...

DIRECTIONS: FACTOR and SOLVE the following polynomials. You need to make sure to pay attention as to when you need to use sum/difference of cubes, when to use the quadratic pattern and when to factor out a GCF then completely factor. ***The degree of the polynomial tells you how many solutions there are!***

8)
$$x^3 - 6x^2 + 9x = 0$$

9)
$$x^3 + 27 = 0$$

10)
$$x^4 - 8x^2 + 7 = 0$$

8)
$$x^3 - 6x^2 + 9x = 0$$
 9) $x^3 + 27 = 0$ 10) $x^4 - 8x^2 + 7 = 0$ 11) $2x^3 - 18x^2 + 40x = 0$

12)
$$x^3 - 125 = 0$$

13)
$$x^4 - 5x^2 + 4 = 0$$

12)
$$x^3 - 125 = 0$$
 13) $x^4 - 5x^2 + 4 = 0$ 14) $3x^3 - 2x^2 - 5x = 0$ 15) $27x^3 + 1 = 0$

15)
$$27x^3 + 1 = 0$$

16)
$$8x^3 - 27 = 0$$

17)
$$x^4 + 4x^2 - 12 =$$

16)
$$8x^3 - 27 = 0$$
 17) $x^4 + 4x^2 - 12 = 0$ 18) $64x^3 - 216 = 0$ 19) $x^4 - 4 = 0$

$$19)x^4 - 4 = 0$$

DIRECTIONS: For the following polynomial identities (a) prove algebraically – with justifications and (b) verify the identity numerically with non-zero values.

20)
$$(a - b)^2 = a^2 - 2ab + b^2$$

21)
$$(x + y)^2(x - y) = x^3 + x^2y - xy^2 - y^3$$

*** Expect to see a couple of questions about something that we covered on our last polynomial test as well... Maybe brush up on graphing polynomials or the process of long division?