WORKSHEET 1

Use the pattern to fill in the missing numbers in Pascal's triangle.

Shown below are portions of Pascal's triangle. Fill in the missing numbers.

WORKSHEET 2

 (a) Find the sum of the elements in the first few rows of Pascal's triangle. Fill in the following table:

Row	0	1	2	3	4	5	6
Row sum	1	2					

- (c) How could you relate the row number to the sum of that row?
- (d) How would you express the sum of the elements in the 20th row? the 100th row?
- 2. (a) Where is the element that will give the sum of the first 4 elements of the first diagonal (1 + 2 + 3 + 4)?

 The first 5 elements of the first diagonal?
 - (b) Where is the element that will give the sum of the first 4 elements of the second diagonal (1 + 3 + 6 + 10)?
 - (c) What is the pattern that will give the sum of any number of elements in any diagonal?
- 3. (a) Find the sum of *all* the elements in Pascal's triangle down to and including the first 6 rows. Fill in the following table:

Row	0	1	2	3	4	5
Triangular sum	1	3				

(b) If you see a pattern, then you can fill in the following table without adding all the elements.

Row	6	7	8	9	10
Triangular sum					

(c) What is the rule?