Friday, June 5, 2020

Volumes of Composite Solids

For the examples that will be shown we'll round Volume to the nearest hundredth.

Composite Solid: A solid made up of two or more solids.

Volume of Composite Solids:

There are two basic methods to find the volume of a Composite Solid:

- Divide the solid into pieces. Find the volume of each piece, then add the volumes together.
- Picture the orginal solid as a larger solid then subtract the volumes of the "missing" pieces.

This is a cylinder with a hole drilled through it which means

All angles are right angles and the "gap" is centered on the front face.

We'll find the volume of this Composite Solid two ways.

- 1. Divide it into 3 smaller solids and add the 3 volumes.
- 2. Make it into one larger solid and subtract the "missing" piece.

Total Vol = 72 cm³ + 120 cm³ =
$$192 \text{ cm}^3$$

Total Vol = Cylinder + hemisphere + hemisphere = Cylinder + 1 Sphere

Sphere:
$$V = \frac{4}{3}\pi r^3$$

r = 3 ft same as the cylinder

$$V = \frac{4}{3} \pi (3)^3 = \frac{4}{3} \pi (27)$$
$$= 36\pi \text{ ft}^3$$

Cylinder:
$$V = \pi r^2 h$$

$$V = \pi(3)^2 10 = \pi(9)10$$

$$= 90\pi \text{ ft}^3$$

Total Vol =
$$90\pi \text{ ft}^3 + 36\pi \text{ ft}^3 = 126\pi \text{ ft}^3$$

You can now finish Practice #27 by doing problems 13 and 14.

This practice is due on Sunday, June 7 by 10:00 pm