Thursday, June 4, 2020

Areas and Volumes of Similar Solids

Similarity Ratio of Similar Solids:

The ratio of corresponding dimensions

For example, the similarity ratio of these similar solids would be

$$\frac{8}{5}$$
 or $\frac{5}{8}$

Similar Solids: solids with the same shape and all corresponding dimensions are proportional.

Theorem 11-12 Areas and Volumes of Similar Solids

If the similarity ratio of two similar solids is $\frac{a}{b}$, then

- (1) the ratio of their areas is $\left(\frac{a}{b}\right)^2$ or $\frac{a^2}{b^2}$, and
- (2) the ratio of their volumes is $\left(\frac{a}{b}\right)^3$ or $\frac{a^3}{b^3}$.

These two cylinders are similar.

a) What is the ratio of their SA?

similarity ratio:
$$\frac{4}{5}$$
 or $\frac{5}{4}$

Using
$$\frac{L}{B}$$
: Ratio of SA = $\left(\frac{4}{5}\right)^2 = \frac{16}{25}$

b) What is the ratio of their Vol?

Using
$$\frac{L}{B}$$
: Ratio of Vol = $\left(\frac{4}{5}\right)^3 = \frac{64}{125}$

The ratio of the Vol of two similar solids is $\frac{125 \text{ in}^3}{216 \text{ in}^3}$

Find the similarity ratio of these two solids. $\sqrt[3]{\frac{125 \text{ in}^3}{216 \text{ in}^3}} = \boxed{\frac{5}{6}}$

$$\sqrt[3]{\frac{125 \text{ in}^3}{216 \text{ in}^3}} = \frac{5}{6}$$

Find the ratio of their SA.
$$\left(\frac{5}{6}\right)^2 = \frac{25}{36}$$

The ratio of the SA of two similar solids is $\frac{144 \text{ cm}^2}{169 \text{ cm}^2}$

Find the similarity ratio of these two solids.
$$\sqrt{\frac{144 \text{ cm}^2}{169 \text{ cm}^2}} = \frac{12}{13}$$

Find the ratio of their volumes.
$$\left(\frac{12}{13}\right)^3 = \frac{1728}{2197}$$

These two pyramids are similar. Find the SA of the smaller pyramid.

Similarity Ratio:
$$\frac{L}{B} = \frac{6}{10} = \frac{3}{5}$$

Ratio of SA =
$$\left(\frac{3}{5}\right)^2 = \frac{9}{25}$$

Ratio of SA =
$$\left(\frac{3}{5}\right)^2 = \frac{9}{25}$$

 $\frac{9}{25} = \frac{x}{600 \text{ ft}^2}$ $x = 216 \text{ ft}^2$

These two pyramids are similar, find the volume of the smaller pyramid.

Similarity Ratio:
$$\frac{L}{B} = \frac{7}{21} = \frac{1}{3}$$

Ratio of VoI =
$$\left(\frac{1}{3}\right)^3 = \frac{1}{27}$$

$$\frac{1}{27} = \frac{x}{1000 \text{ mm}^3}$$

$$x = 37.04 \text{ mm}^3$$

These cones are similar. Find the height of the smaller cone.

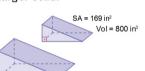
Ratio of VoI =
$$\frac{343 \text{ cm}^3}{729 \text{ cm}^3}$$

Sim Ratio =
$$\sqrt[3]{\frac{343 \text{ cm}^3}{729 \text{ cm}^3}} = \frac{3}{9}$$

$$\frac{7}{9} = \frac{h}{12}$$

These two prisms are similar. Find the missing length of the smaller prism.

 $SA = 324 in^2$



Ratio of SA =
$$\frac{256 \text{ in}^2}{324 \text{ in}^2}$$

Sim Ratio =
$$\sqrt{\frac{256 \text{ in}^2}{324 \text{ in}^2}} = \frac{16}{18} = -\frac{1}{18}$$

$$\frac{8}{9} = \frac{1}{11}$$
 length = 9.78 in

These two solids are similar. Find the Volume of the larger solid. Ratio of SA = $\frac{169 \text{ in}^2}{225 \text{ in}^2}$

SA = 225 in²

Sim Ratio = $\sqrt{\frac{169 \text{ in}^2}{225 \text{ in}^2}} = \frac{13}{15}$

Ratio of Vol =
$$\left(\frac{13}{15}\right)^3 = \frac{2197}{3375}$$

$$\frac{2197}{3375} = \frac{800}{x}$$
 x =

You can now finish problems 10-12 on Practice #27 This practice will be due on Sunday, June 7 by 10:00 pm