Monday, June 1, 2020

Sec 11-5: Volumes of Pyramids & Cones.

Given the square prism and square pyramid have the same Base and height.

How many pyramids do you think it will take to fill up the prism?

Volume of a Prism:

V = Bh

Volume of a Cylinder:

 $V = Bh = \pi r^2 h$

Watch the demonstration about the relationship between the volume of a Pyramid and a Prism:

www.youtube.com/watch?v=rTs9HwWiBal

If you have a Prism and a Pyramid with the same Base and Height then from the previous demonstration we now know that the following is true:

Volume of Prism = (3)(Volume of Pyramid)

Find the volume of this square pyramid to the nearest hundredth.

$$V = \frac{1}{3}Bh$$

B = area of square base = $(21)(21) = 441 \text{ cm}^2$

$$V = \frac{1}{3}(441 \text{ cm}^2)(25 \text{ cm}) = 3675 \text{ cm}^3$$

Volume of a Pyramid:

$$V = \frac{1}{3}$$
 (Volume of Prism)

$$V = \frac{1}{3}Bh$$

Find the volume of this square pyramid to the nearest hundredth.

$$V = \frac{1}{3}Bh$$

9 in. is the slant height

B = area of square base = $(side)^2$

See the next page for the process of finding B

$$x^2 + 7^2 = 9^2$$

$$\sqrt{x^2} = \sqrt{9^2 - 7^2}$$

$$x = 5.66$$
 in.

Side length of Square Base = 2x = 2(5.66) = 11.32 in

B =
$$(11.32 \text{ in})^2$$
 = 128.14 in^2

Find the volume of this hexagonal pyramid to the nearest tenth.

$$V = \frac{1}{3}Bh$$

10 is the apothem of the Base.

See next page to find B

$$V = \frac{1}{3}Bh$$

$$V = \frac{1}{3}(128.14 \text{ in}^2)(7 \text{ in})$$

$$V = 298.99 \text{ in}^3$$

$$\frac{1}{2}$$
 ap $a = 10$

$$x = SL = \frac{LL}{\sqrt{3}} = \frac{10}{\sqrt{3}} = 5.77$$

Side =
$$2x = 2(5.77) = 11.54$$

p = perimeter = $6(11.54)$
p = 69.24

$$B = \frac{1}{2}(10)(69.24) = 346.2$$

$$V = \frac{1}{3}Bh$$

$$h = 25$$

B = 346.2

$$V = \frac{1}{3}(346.2)(25) = 2885$$

You can now do the first three problems of Practice #27.

We'll continue this material tomorrow.

Practice #27 will be due on Sunday, June 7 by 10:00 pm

The volume of this rectangular pyramid is 210 in³. Find the height to the nearest hundredth.

$$V = \frac{1}{3} Bh \qquad V = 210 \text{ in}^{3}$$

$$B = (8 \text{ in})(6 \text{ in}) = 48 \text{ in}^{2}$$

$$210 = \frac{1}{3} (48)h \qquad 630 = (48)h$$

$$3 \cdot 210 = \frac{1}{3} (48)h \cdot 3 \qquad \frac{630}{48} = \frac{(48)h}{48}$$

$$h = 13.13 \text{ in}$$