Tuesday, May 5, 2020

Sec 12-4: Angle Measures and Segment Lengths.

Tangent Line:

A line that intersects a circle exactly once.

AB is tangent to ∘Q at point T

Secant Line:

A line that intersects a circle at two points.

AB is a secant of ©Q because it intersects the circle at points C and D.

Theorem 12-11

The measure of an angle formed by two lines that
(1) intersect inside a circle is half the sum
of the measures of the intercepted arcs.

$$m \angle 1 = \frac{1}{2}(x + y)$$

Theorem 12-11

(2) intersect outside a circle is half the difference of the measures of the intercepted arcs.

2 Secants

1 Secant and 1 Tangent

2 Tangents

$$m \angle 1 = \frac{1}{2}(x - y)$$

Find m∠APB

$$m \angle APB = \frac{1}{2} \bullet (80^{\circ} + 50^{\circ})$$

In the following examples Q is the center of each circle.

Find the m∠A.

$$m \angle A = \frac{1}{2} \bullet (100^{\circ} - 40^{\circ})$$

$$=\frac{1}{2} \bullet (60^\circ) = 30^\circ$$

Find mCD.

$$m \angle CPD = \frac{1}{2} \bullet (40^{\circ} + x)$$

$$52^{\circ} = \frac{1}{2} \bullet (40^{\circ} + x)$$

$$2 \bullet 52^{\circ} = \frac{1}{2} \bullet (40^{\circ} + x) \bullet 2$$

$$104 = 40 + x$$

$$-40 - 40$$

$$x = mCD = 64^{\circ}$$

You can now finish the rest of Practice #23.

This practice and it will be due on Thursday, May 7 by 10:00pm

$$m \angle P = \frac{1}{2} \bullet (x - 50^{\circ})$$

$$28^{\circ} = \frac{1}{2} \bullet (x - 50^{\circ})$$

$$2 \bullet 28^{\circ} = \frac{1}{2} \bullet (x - 50^{\circ}) \bullet 2^{\circ}$$

$$56^{\circ} = x - 50$$

$$+50$$

x =
$$\widehat{CD}$$
 = 106°