Monday, May 4, 2020

Finish Sec 12-3: Inscribed Angles

Given \widehat{AC} : $\angle ABC \cong \angle ADC$ because they both intercept \widehat{AC} .

In other words,

they are both = $\frac{1}{2} \cdot m\widehat{AC}$

Review of Inscribed Angles:

Inscribed angle is an angle whose vertex is on the circle and whose sides are chords of the circle.

∠ABC is an inscribed angle.

The measure of an inscribed angle equals half of the intercepted arc.

$$m\angle ABC = \frac{1}{2} \cdot m\widehat{AC}$$

Given AC is a diameter.

ADC is a semicircle. mADC = 180°

Inscribed∠ABC inctercepts semicircle ADC.

$$m \angle ABC = \frac{1}{2} \cdot 180^{\circ} = 90^{\circ}$$

Corollaries Corollaries to the Inscribed Angle Theorem

3. The opposite angles of a quadrilateral inscribed in a circle are supplementary.

Quadrilateral ABCD is inscribed in the circle.

$$m\angle A + m\angle C = 180^{\circ}$$

AND

$$m \angle B + m \angle D = 180^{\circ}$$

Example Problems are given on the next few pages.

Q is the center in all circles.

Theorem 12-10

The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc. $m\angle C = \frac{1}{2}m\widehat{BDC}$

Given \overrightarrow{AB} is tangent to $\circ Q$ at pt B and chord \overrightarrow{BC} .

∠ABC intercepts BC.

$$m \angle ABC = \frac{1}{2} \bullet 70^{\circ} = 35^{\circ}$$

AB is a diameter.

Find the measure of the following:

 $m \angle C = 90^{\circ}$ it's an angle inscribed in a semicircle

m∠ABC =

m∠BAC =

mDB =

AB is a diameter.

Find the measure of the following:

$$m \angle ABC = 62^{\circ} = \frac{1}{2} \cdot \widehat{AC}$$

AB is a diameter.

 $\widehat{\text{mDB}} = 80^{\circ} = 2 \cdot \angle DAC$

AB is a diameter.

Find the measure of the following:

 $m \angle BAC = 28^{\circ}$ = either 180-90-62 from ΔABC or half of \widehat{BC} which is 180-124

Find the following:

m∠BAC m∠BDC

Since ∠BAC & ∠BDC intercept the same arc, BC, they must be congruent.

$$m \angle BAC = m \angle BDC = \frac{1}{2} \cdot \widehat{BC} = \frac{1}{2} \cdot 50^{\circ}$$

 $m \angle BAC = m \angle BDC = 25^{\circ}$

 $\overline{\text{CD}}$ is tangent to the circle at pt C.

Given mABC is 250° find the following: m∠ACD

∠ACD intercepts AC .

$$m \angle ACD = \frac{1}{2} \cdot m\widehat{AC} = \frac{1}{2} \cdot 110^{\circ} = 55^{\circ}$$

$$\overrightarrow{mAC} = 360^{\circ} - \overrightarrow{mABC} = 360^{\circ} - 250^{\circ} = 110^{\circ}$$

m∠B ∠B intercepts \overrightarrow{CDA} which = 30 + 160 = 190° m∠B = $\frac{1}{2} \cdot 190^{\circ} = 95^{\circ}$

mZC	ZC = 180 - ZA = 180 - 55° = [125°
m∠D	∠D = 180 - ∠B = 180- 95° = 85°

You can now finish the first part of Practice #23.

We'll finish the rest of the material for this practice and it will be due on Thursday, May 7 by 10:00pm