Tuesday, May 26, 2020

Sec 11-3: Surface Area of Pyramids

Pyramid

- Polyhedron with only one Base that is a polygon.
- Lateral Faces are triangles.
 Lateral Faces meet at a point called the Vertex of the Pyramid.

Base

Lateral Face

Vertex

Lateral Edge

Base Edge

Remember that a Prism is

a 3-D figure with two congruent Polygons in opposite faces (Bases)

Regular Pyramid:

- Base is a Regular Polygon
- Lateral Faces are Isosceles Triangles.

h

Height of the Pyramid (Altitude)

Perpendicular segment from the Vertex to the Base

Names for Pyramids:

Just like Prisms, Pyramids are named using the shape of the base.

The Pyramid at the left would be called a Square Pyramid if the base is a square.

Slant Height

Perpendicular segment from the Vertex to a Base Edge.

If you flattened out a square pyramid it would look like this:

B: the formula for the area of the Base will depend on the shape of the Base.

Surface Area of a Pyramid:

$$SA = LA + B$$

LA = Lateral Area of the Pyramid
B = Area of the Base of the Pyramid

Lateral Area of a Pyramid:

$$LA = \frac{1}{2} (p)(\ell)$$

p = perimeter of the Base

Find the Surface Area of this Square Pyramid.

4 in = length of Base Edge 6 in = Height of Pyramid (altitude) 7 in = Slant Height

B =
$$(4\text{in})(4\text{in})$$
 or $(4\text{in})^2 = 16 \text{ in}^2$
LA = $\frac{1}{2}(p)(\cancel{k})$ p = $4(4\text{ in})$ = 16 in.
 \cancel{k} = 7 in.
= $\frac{1}{2}(16\text{in})(7\text{in}) = \frac{1}{56} \text{ in}^2$

SA =
$$56 + 16 = 72 \text{ in}^2$$

Surface Area of a Pyramid:

$$SA = LA + B$$

$$SA = \frac{1}{2}(p)(\ell) + B$$

Find the SA of this Square Pyramid.

12 = Height of the Pyramid15 = Slant Height

We need to find the length of a Base Edge.

LA =
$$\frac{1}{2}$$
(p)(ℓ) p = 6(14) = 84
= $\frac{1}{2}$ (84)(30) ℓ = 30
LA = 1260

$$SA = LA + B$$

$$B = (18)^2 = 324$$

LA =
$$\frac{1}{2}$$
(p)(ℓ) p = 4(18) = 72
= $\frac{1}{2}$ (72)(15) ℓ = 15
LA = 540

Now let's find ${\bf B}$

Since **B** is the area of a Regular Hexagon use the following formula:

$$B = \frac{1}{2} (a)(p)$$

p = 84 from previous work

a = the apothem

$$a = 7\sqrt{3}$$

$$B = \frac{1}{2} (7 \sqrt{3})(84)$$

B = 294
$$\sqrt{3}$$

$$SA = LA + B$$

$$= 1260 + 294 \sqrt{3}$$

You can now do the first few problems of Practice #26.

We'll continue with this material tomorrow

Due date for this practice is still to be determined.