Thursday, April 30, 2020

Sec 12-3: Inscribed Angles

Q is the center of both circles.

Central ∠AQC

Inscribed ∠ABC

Central Angle: Angle whose vertex is

the center of a circle.

It's formed by two radii.

Inscribed Angle: Angle whose vertex is a

point on the circle.

It's formed by two chords that meet at a point on the circle.

Relationship between the measure of a Central $\, \angle \,$ and it's intercepted arc.

 $\widehat{\mathsf{AC}}$ is the arc that is intercepted by $\angle \mathsf{AQC}$

 $m \angle AQC = m\widehat{AC}$

Measure of a Central Angle is equal to the measure of its intercepted arc.

The converse of this statement is also true.

Relationship between the measure of an Inscribed ∠ and it's intercepted arc.

Theorem 12-9 Inscribed Angle Theorem

The measure of an inscribed angle is half the measure of its intercepted arc.

 $m \angle B = \frac{1}{2} m\widehat{AC}$

In reverse:

The measure of an intercepted arc is found by doubling the Central \angle .

4)

No, this is a Central Angle.

State if each angle is an inscribed angle.

If it is, name the angle and the intercepted arc.

1)

No, the vertex isn't ON the circle

Find the measure of each?.

$$? = \angle CAB = \frac{1}{2}m\widehat{CB}$$
$$= \frac{1}{2} \cdot 80 = \boxed{40^{\circ}}$$

$$? = \widehat{mWV} = 2 \cdot \angle WXV$$
$$= 2 \cdot 42 = 84^{\circ}$$

There are two ways to find the value of ? in this problem.

8)

1st method:

The sum of the \angle 's in \triangle BCD = 180°

$$\angle B = 180 - 49 - 70 = 61^{\circ}$$

$$? = \widehat{mDC} = 2 \cdot \angle DBC$$
$$= 2 \cdot 61 = \boxed{122^{\circ}}$$

You can now finish the rest of Practice #22.

This practice will be due by 10:00 pm on Saturday, May 2.

