Tuesday, April 28, 2020

Finish Sec 12-1: Tangent Lines

The problem on the previous page is an example of the following Theorem:

Theorem 12-2

If a line in the plane of a circle is perpendicular to a radius at its endpoint on the circle, then the line is tangent to the circle.

 \overrightarrow{AB} is tangent to $\bigcirc O$.

Is line QR tangent to circle P?

Only if \angle PQR is a right angle which means \triangle PQR would have to be a right \triangle .

Is 15, 36, 40 a Pythagorean Triple?

$$40^{2} \stackrel{?}{=} 15^{2} + 36^{2}$$

$$1600 \stackrel{?}{=} 225 + 1296$$

$$1600 \neq 1521$$

This means $\triangle PQR$ is **not** a right triangle so $\angle PQR$ is not a right angle thus \overline{QR} is not tangent to circle P because it's not perpendicular to the radius \overline{PQ} .

 \overline{HQ} is tangent to $\,{}^{_{\textstyle \bigcirc}}R\,$ at pt Q. Find the length of \overline{HQ} to the nearest hundredth.

$$19^2 = \mathbf{X}^2 + 6^2$$

$$x^2 = 19^2 - 6^2$$

$$\overline{HQ} = x = \sqrt{19^2 - 6^2} = 18.03$$

 $\overline{\text{CT}}$ is tangent to $\circ A$ at pt T. CT = 8 and BC = 5. Find the value of x to the nearest hundredth.

$$(x+5)^{2} = x^{2} + 8^{2}$$

$$x^{2} + 10x + 25 = x^{2} + 64$$

$$10x + 25 = 64$$

$$10x = 39$$

$$x = 3.90$$

Points A, B, and C are points of tangency.

The circle is inscribed in the triangle.

The triangle is circumscribed about the circle.

Theorem 12-3

The two segments tangent to a circle from a point outside the circle are congruent.

 $\overline{\mathsf{AB}} \cong \overline{\mathsf{CB}}$

You can now finish the rest of Practice #21.

This practice will be due by 10:00 pm on Thursday, April 30.

