Tuesday, April 21, 2020

Sec 10-7 Areas of Circles and Sectors

Find the area of circle A to the nearest tenth. \overline{QR} is a diameter.

$$A = \pi r^2$$

diameter = 24 in

radius = dia ÷ 2 = 24÷2 = 12 in

$$A = \pi (12)^2 = 452.4 \text{ in}^2$$

Area of a circle: $A = \pi r^2$

Find the area of circle X. Give answer in terms of π .

$$A = \pi r^2$$

 \overline{XT} is a radius: r = 5 cm

$$A = \pi (5)^2 = 25\pi \text{ cm}^2$$

Find the length of the radius if the area of a circle is 180 ft². Round to the nearest hundredth.

$$A = \pi r^2$$

$$\frac{180}{\pi} = \frac{\pi r^2}{\pi}$$

$$r^2 = \frac{180}{\pi}$$
 $r = \sqrt{\frac{180}{\pi}} = 7.57 \text{ ft}$

Sector of a Circle: Part of a circles area.

It's formed by two radii and the arc connecting the ends of the radii.

The shaded region to the left is an example of a sector.
It's like a slice of pizza.

Find the length of the diameter if the area of a circle is 225π m². $A = \pi r^2$

$$2\underline{25}\pi = \underline{\pi r^2}$$

$$r^2 = 225$$
 $r = \sqrt{225} = 15$

diameter =
$$2 \cdot r = 2 \cdot 15 = 30 \,\mathrm{m}$$

Finding the area of a sector is a lot like finding the length of an arc.

You can use a proportion similar to the one used to find the length of an arc.

____part of a circle in degrees the whole circle in degrees = ____part of the circles area the whole area of the circle

Area of a Sector proportion:

 $\frac{\text{measure of a Central } \angle}{360^{\circ}} = \frac{\text{Area of the sector (x)}}{\text{Area of the circle (}\pi\text{r}^{2}\text{)}}$

Remember the measure of a Central Angle is the same as the measure of it's corresponding arc.

In circle Q find the area of the sector formed by $\widehat{\mathsf{EG}}$. $\overline{\mathsf{CE}}$ is a diameter and CE=20 ft. Leave your answer in terms of π .

1st: find the measure of EG.

- 2nd: find the area of the circle: $r = dia \div 2 = 20 \div 2 = 10 \text{ ft}$ $A = \pi (10)^2 = 100\pi$
- 3rd: write the proportion: $\frac{80^{\circ}}{360^{\circ}} = \frac{x}{100}$
- 4th: cross-multiply: $x = 69.81 \text{ ft}^2$

Find the area of shaded sector in circle Q to the nearest hundredth.

1st:

Area of the circle: $\pi(6)^2 = 36\pi$

2nd: write the proportion

$$\frac{85^{\circ}}{360^{\circ}} = \frac{x}{36\pi}$$

3rd: cross-multiply

$$x = 26.70 \text{ in}^2$$

The area of the shaded sector in circle A is 75 in². Find the radius of the circle.

1st: set up the proportion

$$\frac{125^{\circ}}{360^{\circ}} = \frac{75}{\text{area of the circle}}$$

2nd: solve for the area of the circle area of the circle = $\frac{216}{}$

$$\pi r^2 = 216 \longrightarrow r^2 = \frac{216}{\pi}$$

$$r = \sqrt{\frac{216}{\pi}} = 8.29 \text{ in}$$

You can now do Practice #19