Monday, April 20, 2020

Sec 10-6: Circumference and Arc Length.

Find the circumference of each circle. Leave your answer in terms of π . Q is the center of each circle.

AQ is a radius so use C=2πr

 $C = 2\pi(7) = 14\pi \text{ in}$

BC is a diameter so use C=πd

 $C = \pi(23) = 23\pi \text{ cm}$

Circumference of a Circle:

The distance around the outside of a circle.

$$C = \pi d$$
 or $C = 2\pi r$

$$C = 2\pi r$$

Find the circumference of each circle. Round answers to the nearest hundredth. Q is the center of each circle.

AB is a diameter so use C=πd

$$C = \pi(5) = 15.71 \text{ ft}$$

CQ is a radius so use $C=2\pi r$

$$C = 2\pi(11) = 69.12 \text{ m}$$

Given the circumference of a circle is 50 cm, find it's radius to the nearest hundredth.

$$C = 2\pi r \longrightarrow \frac{50}{2\pi} = \frac{2\pi r}{2\pi}$$

$$r = \frac{50}{2\pi} = 7.96 \text{ cm}$$

$$50 \div (2\pi)$$

The measure of an arc is a number of degrees that represents how much of a whole circle we have, how much out of a possible 360°.

This is different than the LENGTH of an arc.

Given the circumference of a circle is 288π in, find it's diameter.

$$C = \pi d$$
 \longrightarrow $\frac{288\pi}{\pi r} = \frac{\pi d}{rr}$ $d = 288 \text{ in}$

Arc Length:

The distance between two points on the circle as you trace around the outside of the circle.

It's a portion of the circle's circumference.

Given in units of length such as in., cm., ft., ...

To find the length of an arc you can use a proportion.

part of a circle Just think of this ratio:

Degrees

Distance

part of a circle in degrees part of the circumference the whole circle in degrees the whole circumference

The textbook gives this formula for Arc Length:

The length of an arc of a circle is the product of the ratio measure of the arc and the circumference of the circle. length of $\widehat{AB} = \frac{m\widehat{AB}}{360} \cdot 2\pi r$

This formula is same as the proportion

measure of a Central / 271 circumference $(2\pi r \text{ or } \pi d)$

where both sides were multiplied by the circumference

Arc Length proportion:

$$\frac{\text{measure of a Central } \angle}{360^{\circ}} = \frac{\text{Arc Length } (x)}{\text{circumference } (2\pi r \text{ or } \pi d)}$$

Remember the measure of a Central Angle is the same as the measure of it's corresponding arc.

Find the length of \widehat{AC} to the nearest tenth.

1st: Find the circumference: $C = 2\pi(5) = 10\pi$

2nd: Set up the proportion:

$$\frac{90^{\circ}}{360^{\circ}} = \frac{x}{10\pi}$$

3rd: Cross-multiply and round: x = 7.9 in

Find the length of \widehat{AC} to the nearest tenth.

1st: Find the circumference: $C = 2\pi(8) = 16\pi$

2nd: Set up the proportion:

$$\frac{60^{\circ}}{360^{\circ}} = \frac{x}{16\pi}$$

3rd: Cross-multiply and round: x = 8.4 cm

Find the length of $\widehat{\mathsf{AC}}$ to the nearest tenth.

 \overline{AB} is a diameter. AB = 6 ft

1st: Find Circumference: $C = \pi d = 6\pi$

2nd: Find the measure of $\angle AXC = \widehat{AC}$

$$\widehat{AC}$$
 = 180° - \widehat{BC} = 180° - 42° = 138°

3rd: Set up and solve Proportion:

$$\frac{138^{\circ}}{360^{\circ}} = \frac{x}{6\pi}$$

Find the length of $\widehat{\mathsf{ABC}}$ to the nearest tenth.

1st: Find the circumference: $C = 2\pi(11) = 22\pi$

2nd: Set up the proportion:

$$\frac{250^{\circ}}{360^{\circ}} = \frac{x}{22\pi}$$

3rd: Cross-multiply and round: x = 48.0 cm

Given the length of \widehat{AC} is 45 in, find the diameter to nearest tenth.

Set up the proportion with the known information.

$$\frac{105^{\circ}}{360^{\circ}} = \frac{45}{\text{circumference}}$$

Cross multiply to solve for the circumference:

C= 154.3 in
$$\longrightarrow \pi d$$
 = 154.3 divide both sides by π to get: $d = 49.1$ in

Given the length of AC is 87 cm, find the measure of ∠AXC to nearest tenth

1st: Find Circumference: $C = 2\pi r = 2\pi(50) = 100\pi$

2nd: Set up proportion with known information. $\frac{x}{360^{\circ}} = \frac{87 \text{ cm}}{100\pi}$

3rd: Cross-multiply to solve for x: x = 99.7

this value of x represents $\angle AXC = \widehat{AC}$

∠AXC = 99.7°

You can now do Practice #18 which is on my blog.