Sec 6-3: Proving that a Quadrilateral is a Parallelogram.

What do you think you would have to know about Quadrilateral ABCD for you to be able to conclude that it is a Parallelogram?

To prove a quadrilateral is a parallelogram you can show that the converses of the definition and theorems about parallelograms are true,

plus one other theorem.

Quadrilateral Booklet

Parallelogram	Proving a Quad is a -gram:
	1.
	2.
	3.
	4.
	5.

<u>Definition of a Parallelogram</u>: A quadrilateral with both pairs of opposite sides parallel.

Converse of the definition:

If both pair of opposite sides of a quadrilateral are parallel, then the quad is a parallelogram.

Theorem 6-1

Opposite sides of a parallelogram are congruent.

Converse of Theorem 6-1:

2. If both pairs of

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Theorem 6-2

Opposite angles of a parallelogram are congruent.

Converse of Theorem 6-2:

3.

Theorem 6-6

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Theorem 6-3

The diagonals of a parallelogram bisect each other.

Converse of Theorem 6-3:

Theorem 6-7

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

Theorem 6-8

5.

If one pair of opposite sides of a quadrilateral is both congruent and parallel, then the quadrilateral is a parallelogram.

Find the value of each variable such that the quadrilateral must be a parallelogram.

Find the value of each variable such that the quadrilateral must be a parallelogram.

For ABCD to be a parallelogram \overline{AB} and \overline{CD} must be both parallel and congruent.

for \overline{AB} to be congruent to \overline{CD} :

for AB to be parallel to CD: Angles BAC & DAC must be congruent. Alternate Interior Angles

Find the value of each variable such that the quadrilateral must be a parallelogram.

Is this quadrilateral a parallelogram?

If \overline{AB} is going to be parallel to \overline{CD} angles BAC and DAC must be congruent (alternate-interior angles). Since they these angles are not congruent \overline{AB} is not parallel to \overline{CD} .

Therefore, ABCD can't be a parallelogram.

Hwk #4 Sec 6-3

Page 324

Problems: 3, 4, 7-9, 14, 15, 17, 22-24