Find the measures of the numbered angles in this parallelogram.

Find the measures of the numbered angles in this parallelogram.

Find the measures of the numbered angles in this parallelogram.

Theorem 6-4

If three (or more) parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

$$\overline{BD}\cong \overline{DF}$$

In the figure at the right, $\overrightarrow{DH} \parallel \overrightarrow{CG} \parallel \overrightarrow{BF} \parallel \overrightarrow{AE}$, AB = BC = CD = 2, and EF = 2.5. Find EH.

The four black lines are parallel and AB=BC=CD

Find each: ZC = 17 CD = 5 WZ = 3.5

Section 6-3: Proving That a Quadrilateral is a Parallelogram.

Property of a Parallelogram:

Both pairs of opposite sides are parallel

Converse:

If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.

Hwk #17

Sec 6-2

Pages 316-317

Problems 24, 25, 29, 30, 37-39, 45

Is ABCD a Parallelogram?

A (4,3)

B (5,8)

C(-3,2)

D(-4,-3)

AB $m = \frac{5}{1}$ BC $m = -\frac{6}{5} = \frac{3}{4}$ CD $m = \frac{2-3}{5} = \frac{5}{5}$

DA m= 3=3 = 16/2=3/

es ABCD is a ll-gram b/c both pair of opp sides and ll

Property of a Parallelogram:

Both pairs of opposite sides are congruent.

Theorem 6-5

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Property of a Parallelogram:

Both pairs of opposite angles are congruent.

Theorem 6-6

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Is EFGH a Parallelogram? E(3,-1) F(6,5) G(1,13) H(-5,7) $EF \sqrt{3^2+6^2} = \sqrt{45} NOT a 11-gram.$ $FG SH \sqrt{6^2+6^2} = \sqrt{72}$ $AE \sqrt{6^2+6^2} = \sqrt{72}$ $AE \sqrt{6^2+6^2} = \sqrt{72}$

Property of Parallelograms:

The diagonals bisect each other.

Theorem 6-7

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

On a piece of graph paper plot Point A in the second quadrant and Point D in the third quadrant.

From A do a rise of 2 and a run of 7. Label this point B

From D do a rise of 2 and a run of 7. Label this point C.

Connect the four points to create a quadrilateral.

How are AB and CD related to each other? $\stackrel{\cdot}{=}$ $\stackrel{\cdot}{=}$

This figure is a parallelogram

Is WXYZ a Parallelogram?

W(8,3) Y(4,5)Z(21,10)X(-9,-1)

midpoint by (8th 72)

midpoint & 2 (21+9-1+10) (6,4.5)

NOT All-gram

ble diagonals don't bisecy