Theorem 5-2 Perpendicular Bisector Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

Theorem 5-3 Converse of the Perpendicular Bisector Theorem

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

How would you measure the distance from Pt A to the line m?

A

m

The distance from a point to a line is the PERPENDICULAR distance.

 \overline{PQ} is the perpendicular bisector of \overline{MN} . Q is the point of intersection of \overline{PQ} and \overline{MN} . If PQ = 9 and PM = 15 find the length of MN.

Segment \overline{AB} is 16 units long. Point C is placed 20 units from \overline{AB} and on the perpendicular bisector of \overline{AB} .

Find the length of \overline{AC} .

$$\chi^{2} = 20^{2} + 8^{2}$$

 $\chi = 21.5$

Theorem 5-4 Angle Bisector Theorem

If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

Theorem 5-5 Converse of the Angle Bisector Theorem

If a point in the interior of an angle is equidistant from the sides of the angle, then the point is on the angle bisector.