Sec 4-5: Isosceles and Equilateral Triangles

Isosceles: A triangle with at least two congruent sides

Equilateral: A triangle with all sides congruent

Theorem 4-3

Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

$$\angle A \cong \angle B$$

Iscosceles Triangles

Loop > = sides

Base -> 3 vol side

Leg

Base Angle

Base Angle

Base

Theorem 4-4

Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite the angles are congruent.

$$\overline{AC}\cong \overline{BC}$$

Theorem 4-5

The bisector of the vertex angle of an isosceles triangle is the perpendicular bisector of the base.

 $\overline{CD} \perp \overline{AB}$ and \overline{CD} bisects \overline{AB} .

Find the value of x in each figure.

1.

2.

3. Find the value of x and y.

Corollary

Corollary to Theorem 4-3

If a triangle is equilateral, then the triangle is equiangular.

$$\angle X \cong \angle Y \cong \angle Z$$

Corollary

Corollary to Theorem 4-4

If a triangle is equiangular, then the triangle is equilateral.

$$\overline{XY} \cong \overline{YZ} \cong \overline{ZX}$$

4. TUVWX is a regular pentagon. Find the value of

- 5. Use the figure above.
- a) If the measure of $(R = 34^\circ)$ find the measure of all other angles.
- b) If WR=13 and the perimeter of \triangle WRD = 43 find the following:

 WD = 15• RD = 15

You can now finish Hwk #19

Are these triangles congruent?

The information suggests SSA but there is no SSA theorem or postulate to show two triangles are congruent.

Find the value of x and y in each triangle.

Using the Pythagorean Theorem you can show that if two $|\chi^2 + \chi^2| = |\chi^2|$ corresponding sides of two right triangles are congruent corresponding sides of two right triangles are congruent the third pair of corresponding sides is also congruent.

Sec 4-6: Congruence in Right Triangles

HL Theorem

Theorem 4-6

Hypotenuse-Leg (HL) Theorem

If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.