Sec 4-5: Isosceles and Equilateral Triangles

Isosceles: A triangle with at least two congruent sides

Equilateral: A triangle with all sides congruent

Theorem 4-3

Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

$$\angle A\cong \angle B$$

Iscosceles Triangles

Theorem 4-4

Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite the angles are congruent.

$$\overline{AC}\cong \overline{BC}$$

Theorem 4-5

The bisector of the vertex angle of an isosceles triangle is the perpendicular bisector of the base.

 $\overline{CD} \perp \overline{AB}$ and \overline{CD} bisects \overline{AB} .

Find the value of x in each figure.

1.

2.

3. Find the value of \boldsymbol{x} and \boldsymbol{y} .

Corollary

Corollary to Theorem 4-3

If a triangle is equilateral, then the triangle is equiangular.

$$\angle X \cong \angle Y \cong \angle Z$$

Corollary

Corollary to Theorem 4-4

If a triangle is equiangular, then the triangle is equilateral.

$$\overline{XY} \cong \overline{YZ} \cong \overline{ZX}$$

