Theorem 3-15

Polygon Exterior Angle-Sum Theorem

The sum of the measures of the exterior angles of a polygon, one at each vertex, is 360.

For the pentagon,

$$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 + m \angle 5 = 360$$
.

Find the number of sides that a regular polygon must have if each exterior angle Interior Angles equals 8°

$$\frac{172 8^{\circ}}{(n-2)180} = 172^{\circ}$$

$$\sqrt{-45}$$

Find the measure of each exterior angle of a regular 30-gon.

$$\frac{100^{\circ}}{30-12^{\circ}} = \frac{100^{\circ}}{30-2} = \frac{100^$$

The measure of each interior angle of a regular polygon is 160°. Find the number of sides.

$$\frac{(n-2)180}{n} = 160$$

Can the measure of each exterior angle of a regular polygon have a measure of a 15°?

Yes

Since the number of sides turned out to be a whole number greater than 2.

Can the measure of each exterior angle of a regular polygon have a measure of a 21°?

$$\frac{360}{21} = 17.14$$

No, because the number of sides must be a **whole number** greater than 2

Find the measure of each interior angle of a regular 40-gon.

sum of interior angles divided by the number of sides.

Sum of exterior $\frac{360}{40} = 9$ by the number of sides.

Can the measure of each interior angle of a regular polygon have a measure of 155°?

$$\frac{(n-2)(80)}{n} = 155$$
 $\frac{360}{35} = 14.4$ No becau

No because the number of sides must be a whole number 14.4 isn't possible.

Can the measure of each interior angle of a regular polygon have a measure of 168°?

Yes, because the number of sides turned out to be a whole number greater than 2.

You can now finish Hwk #14.

Write the equation of the line that passes through the two points (-6, 15) and (2, -1)

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{15 + 1}{6 - 2} = \frac{16}{8} = -2$$

Point-Slope Form

Slope-Intercept Form

$$y - y_1 = m(x - x_1)$$

 $y - y_1 = -2(x - x_1)$
 $y - y_1 = -2(x - x_1)$
 $y - y_1 = -2(x - x_1)$
 $y - y_1 = -2(x - x_1)$

$$y = mx + b$$

$$y = -2x + 3$$

You can turn this into slope-inercept form by distributing the slope and subtracting 1 from both sides