Sec 3-5

A polygon: Closed plane figure with at least three sides that are segments. Sides intersect only at their endpoints. No adjacent sides are

collinear.

Not a Polygon
Why not?

Because Hs
Not a plane figure

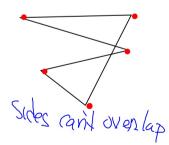
It's Not closed

with at least three sides that are segments

Not a Polygon

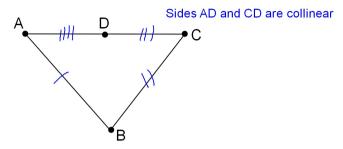
Why not?

ONLY 2 sides


Not a Polygon

Why not?

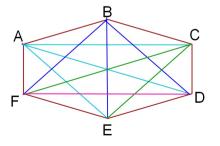
Part S not a Sogment Sides intersect only at their endpoints

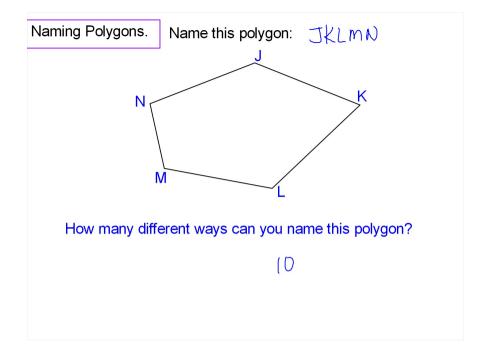

Not a Polygon

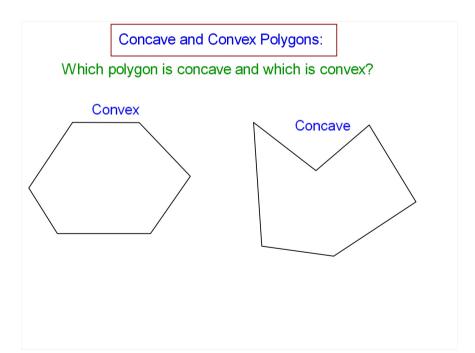
Why not?

No adjacent sides are collinear

Why isn't ABCD considered a polygon?

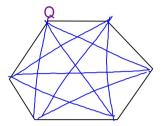


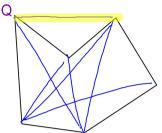

Diagonals of a Polygon:


Diagonal of a Polygon:

A segment that connects two nonconsecutive vertices.

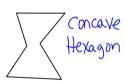
How many diagonals can be drawn from vertex C? 3

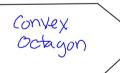



Draw all the diagonals from vertex Q in each polygon

Convex

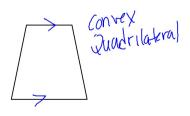
No diagonals have points that all outside of the polygon


Concave


At least one diagonal has points that fall outside of the polygon.

Classify (name) each polygon by the number of sides and state if it is convex or concave.

1


2.

3.

4

Names of polygons:

# sides	Name
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
n	n-gon

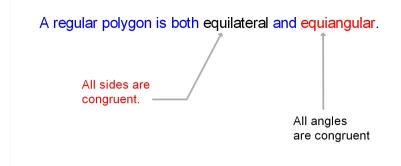
Polygon Angle-Sum Theorem

The sum of the measures of the interior angles of a an n-gon is (n - 2)180 n = # of sides

Find the sum of the inerior angles of each polygon.

1. Heptagon

3. If the sum of the interior angles of a polygon is 4860° find the number of sides.


$$\frac{(n-2)180}{180} = 4860$$

$$\frac{1}{180} = \frac{1}{180}$$

$$\frac{1}{180} = \frac{1}{180}$$

Find the measure of one interior angle of each regular polygon.

1. Decagon

If the measure of one interior angle of a regular polygon is 156° find the number of sides of the polygon.

$$n \cdot \frac{(n-2)80}{n} = 156 \cdot n$$

$$(n-2)80 = 156 \cdot n$$

$$(80n-360=156n)$$

$$-180n$$

$$-360=-34n$$

$$-360=-34n$$

$$-360=-34n$$