Monday, May 4, 2020

Periodic Functions and their graphs

A cycle of a periodic function.

Even though this highlighted portion could create the whole graph if it is translated left and right, it is NOT a cycle of this graph because there is a smaller portion of the graph that could be repeated in order to create the whole graph.

The three highlighted portions of the graph are all examples of a cycle of this graph.

Notice that they all have the same width (4 units).

Periodic function: A function with a pattern of y-values that repeat at regular intervals.

Cycle: One complete pattern.

The smallest portion of the function that could be translated left and right to create the entire function.

Period: The width of one cycle (x-values)

It's how often y-values repeat.

Find the Period of this Periodic Function.

Period = width of 1 cycle

Period = 4

Maximum of a Periodic Function:

The largest y-value or the highest point on the graph.

Minimum of a Periodic Function:

The smallest y-value or the lowest point on the graph.

State the equation of the Midline of this periodic function.

Midline:

The horizontal line that passes through the middle of the graph.

or

The horizontal line halfway between the max and the min.

Always a y = equation

Amplitude:

The vertical distance from the midline to either the maximum or the minimum. (y-values)

OR

Half the total height of the periodic function

Find the Period, Amplitude, and Equation of the Midline for the periodic function shown below.

Max = 5

Formulas for the Equation of the Midline and the Amplitude.

Midline (Axis):
$$y = \frac{Max + Min}{2}$$

Amplitude =
$$\frac{Max - Min}{2}$$

You will be working with lots of graphs that look like the one below, therefore, we'll focus on those now.

These graphs will have a cycle that takes on one of the four following shapes:

Find the period of each periodic function.

Period =
$$\frac{\text{Total width}}{\text{# of cycles}}$$

Period =
$$\frac{15}{2}$$

Each of these is a full cycle:

Each of the shaded sections represents 1/4 of a cycle.

Sometimes all we'll have to work with are some coordinates. From those we should be able to find the Period.

Period =
$$\frac{8}{2\frac{1}{2}} = \frac{8}{\frac{5}{2}}$$

= $8 \cdot \frac{2}{5} = \boxed{\frac{16}{5}}$

$$Period = \frac{Total\ width}{\#\ of\ cycles}$$

Period =
$$\frac{1}{1 \cdot \frac{3}{4}} - \frac{7}{\frac{7}{4}}$$

$$= 11 \cdot \frac{4}{7} = \frac{44}{7}$$

You can now finish the first part of Practice #24.

We will finish this material tomorrow at which time you can finish the remainder of the practice.

Practice #24 will be due on Thursday, May 7 by 10:00pm