Monday, May 18, 2020

Begin: Outcomes, Probability, and Statistics

One way to answer this question is to create a tree diagram:



There are 12 possible outfits

You are packing for weekend trip and decide to take 2 pairs of pants(blue & tan), 2 pairs of shoes(black & white), and 3 shirts(red, green & orange). If an outfit consists of one of each, how many different outfits could be created using what you've packed?

Another way to answer this question is to apply the Multiplication Counting Principle.

## **Multiplication Counting Principle**:

Stated simply, it is the idea that if there are M ways of doing something and N ways of doing another thing, then there are M•N ways of performing both things.

## For our example:

You are packing for weekend trip and decide to take 2 pairs of pants(blue & tan), 2 pairs of shoes(black & white), and 3 shirts(red, green & orange). If an outfit consists of one of each, how many different outfits could be created using what you've packed?

$$\frac{3}{\text{# shirts}} \times \frac{2}{\text{# pair}} \times \frac{2}{\text{# pair}} = 12 \text{ outfits}$$

For access to your rewards points at a local store you have to come up with a password. This password must have the following requirements:

- 5 characters long.
- the first 2 characters must be a single digit from 0-9 but you CAN'T repeat a digit. (this is 10 different digits!)
- the last 3 characters must a be a single letter but you CAN repeat a letter.

Find the number of possible passwords.

You want to order a 1-topping pizza and have the following to choose from:

- 3 sizes
- 4 different kinds of crust
- 8 different toppings

How many different 1-topping pizzas are possible?

$$3$$
 x  $4$  x  $8$  = 96 1-topping pizzas

= 1,581,840 different passwords

Eight people entered a contest for which the following prizes are awarded:

- \$100 1st place
- \$50 2nd place
- \$25 3rd place

How many different ways could these prizes be awarded?

There are five children in a drawing contest. The judges will award five different prizes to these children. How many ways could the judges award these prizes?

8 x 7 x 6 = 336 different ways to award these prizes that could come in 2nd come in 2nd

The previous problem introduces another concept.

Factorial:  $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ 

Factorial is usually used if you are arranging ALL of the available items.

Most scientific calculators can do factorial. I've also posted a link to an online factorial calculator on my blog under "Helpful Math Resources and Math Links".

There are 12 people on a basketball team and only 12 uniforms to pass out.

How many different ways can all 12 uniforms be passed out to the players?

There are 7 people running a race.

What if prizes are only awarded to the top three finishers? In other words, how many ways can 1st, 2nd, and 3rd places be awarded to the 7 people running in the race?

Multiplication Counting Principle:

$$\frac{7}{2}$$
 x  $\frac{6}{2}$  x  $\frac{5}{2}$  = 210 ways to award 1st, 2nd, & 3rd place

If there were 12 uniforms but only 8 players, how many ways could the uniforms be passed out?

= 19,958,400 ways to pass out uniforms

There are 7 people running a race.

Suppose everybody who runs the race wins a prize. How many ways can the prizes be awarded now?

You could still use the Multiplication Counting Principle but since ALL 7 racers will be awarded a prize you could use Factorial.

7! = 5040 ways to award 7 prizes to 7 racers.

You can now finish the first part of Practice #28. Due date for this practice is still to be determined.