Thursday, May 14, 2020

Graph of the Cosine Function -

Vertical Translation

Starting points for the Parent Functions.

$$y = Sinx$$

Starts on the midline then goes up.

$$y = Cosx$$

Starts at a maximum.

Remember that Sinx and Cosx have

• The same Amplitude: Amp = 1

• The same Midline: y=0

• The same Period: Period = 2π

The just start in a different spot and what we picture as one cycle of each is a different shape

The starting point for the Parent Cosine Function is: at a Maximum.

a is positive

Y = aCosbx

If you start at a Minimum then the graph is upside down.

a is negative

Finding the period, amplitude, and midline is the **SAME** for y=cosx as it was for y=sinx.

$$y = a\cos bx$$

a |a| = Amplitude (vertical Stretch or Shrink factor)
a<0 is an x-axis reflection (upside down)

b Period =
$$\frac{2\pi}{b}$$
 \rightarrow b = $\frac{2\pi}{Period}$

Graphs of
$$y = Cosx \pm k$$

Vertical Translations

$$y = aCos(bx) + k$$

- Amplitude = |a| Vert strecth or shrink.

 Also x-axis reflection if negative
- **b** Leads to the Period = $2\pi/b$ Horiz stretch or shrink
- k Vert translation Equation of the Midline y = k

Use the given description to write the equation of the transformed Cosine function in the following form: y = aCos(bx) + k

1. 5 times taller, x-axis reflection, midline is y= -4, and the period = 14π

$$a = -5$$

$$k = -4$$

$$b = \frac{2\pi}{\text{period}} = \frac{2\pi}{14\pi} = \boxed{\frac{1}{7}}$$

EQ:
$$y = -5\cos(\frac{1}{7}x) - 4$$
 or $-5\cos(\frac{x}{7}) - 4$

Use the given graph to write the equation of the transformed Cosine function in the following form: y = aCos(bx) + k

$$amp = \frac{max - min}{2} = \frac{11 - (-3)}{2} = \frac{14}{2} = \boxed{}$$

Since graph starts a min and goes up a is Neg.

$$y = \frac{\max + \min}{2} = \frac{11 + (-3)}{2} = \frac{8}{2} = \boxed{4}$$

$$k = 4$$

a = -7 **b** =
$$\frac{9}{2}$$
 k =

EQ:
$$y = -7\cos(\frac{9}{2}x) + 4 \text{ or } -7\cos\frac{9x}{2} + 4$$

b: total width =
$$\pi - \frac{\pi}{6} = \frac{6\pi}{6} - \frac{\pi}{6} = \frac{5\pi}{6}$$

cycles = $1\frac{1}{4} = \frac{5}{4}$
Period = $\frac{\text{total width}}{\# \text{cycles}} = \frac{\frac{5\pi}{6}}{\frac{5}{4}} = \frac{5\pi}{6} \cdot \frac{4}{5} = \frac{2\pi}{3}$
b = $\frac{2\pi}{\text{period}} = \frac{2\pi}{\frac{2\pi}{3}} = 2\pi \cdot \frac{3}{2\pi} = 3$

You can now complete the rest of Practice #27

Practice #27 will be due on Saturday, May 16 by 10:00pm

$$a = 6$$
 $b = 3$ $k = -5$

EQ:
$$y = 6\cos 3x - 5$$