Wednesday, May 13, 2020

Graph of the Cosine Function

ı	Below	ar	e the	va	lues to	or	Cos	ot 6	r the	sa	me a	ang	les tr	at	we u	sed	tor S	Sinθ
					$\frac{3\pi}{4}$													
	Cose	1	0.71	0	-0.71	-1	-0.71	0	0.71	1	0.71	0	-0.71	-1	-0.71	0	0.71	1

Notice that these are the same numbers that are on the table for $Sin\theta$, but in different places.

If you look at the coordinates on the Unit Circle you should notice that all of the x-coordinates are the same numbers you see somewhere else as a ycoordinate.

The value of $Cos\theta$ will be the same as a value of $Sin\theta$, but at a different spot.

min=

y=0

This means that Sinx and Cosx have

• The same Amplitude Amp = 1

• The same Midline y=0

• The same Period period = 2π

The just start in a different spot and what we picture as cycle of each is a different shape

One cycle of the parent Sine function looks like a sideways "S". What does one cycle of the parent Cosine function look like?

Looks like a "U" or an upwards opening parabola.

The parent Sine function starts on the midline and goes up.

Where does Cosine "start"? Parent Cosine function starts at a Maximum.

Y = aCosbx

If you start at a Minimum

then the graph is upside down and a is negative in the equation.

$$Y = aCosbx$$

The starting point for the Parent Cosine Function is: at a Maximum.

Every cycle of a Cos curve can also be broken into fourths:

Finding the period, amplitude, and midline is the **SAME** for y=cosx as it was for y=sinx.

$$y = a\cos bx$$

a |a| = Amplitude (vertical Stretch or Shrink factor)
a<0 is an x-axis reflection (upside down)

b Period =
$$\frac{2\pi}{b}$$
 \rightarrow b = $\frac{2\pi}{Period}$

This is all the **SAME** as for aSinbx

$$y = asinbx$$

a |a| = Amplitude (vertical Stretch or Shrink factor)

a<0 is an x-axis reflection (upside down)

b Period =
$$\frac{2\pi}{b}$$
 \rightarrow b = $\frac{2\pi}{Period}$

Find the period and amplitude of this Cosine function:

$$y = -11 \cos \frac{2x}{5} \longrightarrow \frac{2}{5}x$$

$$a = -11 \quad \text{Amplitude} = |a| = 11$$

$$b = \frac{2}{5}$$
 Period = $\frac{2\pi}{b} = \frac{2\pi}{\frac{2}{5}} = 2\pi \cdot \frac{5}{2} = 5\pi$

Find the amplitude and period of this cosine function:

Amplitude = 6

$$\frac{\text{max - min}}{2} = \frac{6 - (-6)}{2} = \frac{12}{2} = 6$$

Period: see next page

Now write the equation of this Cosine Function in y=aCosbx form.

Amplitude = $6 \longrightarrow a = 6$

Since this Cos function starts at a max it is NOT upside down so a is positive.

Period =
$$\frac{3\pi}{2}$$
 \longrightarrow b = $\frac{2\pi}{\text{period}}$ = $\frac{2\pi}{\frac{3\pi}{2}}$

$$=2\pi\cdot\frac{2}{3\pi}=\boxed{\frac{4}{3}}$$

EQ:
$$y = 6\cos\frac{4}{3}x \text{ or } 6\cos\frac{4x}{3}$$

Find the amplitude and period of this cosine function:

You can now do the first part of Practice #27.

We'll finish the remainder of the material tomorrow.

Practice #27 will be due on Saturday, May 16 by 10:00pm

