Tuesday, May 12, 2020

Sec 7-5
Transformations of the Sine Function
Vertical Translations

Find the equation of the midline of this Sine function.

Below is the graph of the Parent Sine Function: y = sinx

Eq of Midline: y = 0

Find the equation of the midline of this Sine function.

Eq of the midline:

Since the point $(\frac{\pi}{4}, 7)$

is on the midline this leads directly to the equation of the midline:

y=7

From previous chapters:

$$y = ax^2 + k$$

a = Vertical Stretch or Shrink Factor if a<0 x-axis reflection

k = Vertical Translation

Graphs of
$$y = Sinx \pm k$$

$$y = aSin(bx) + k$$

- a Amplitude = |a| Vert strecth or shrink.

 Also x-axis reflection if negative
- **b** Leads to the Period = $2\pi/b$ Horiz stretch or shrink
- k Equation of the Midline Vert translation y = k

Use the given description to write the equation of the transformed Sine function in the following form: v = aSin(bx) + k

1. 8 times taller, x-axis reflection, midline is y= 3, and the period = $\frac{4\pi}{3}$

$$a = -8$$
$$k = 3$$

$$b = \frac{2\pi}{\frac{4\pi}{3}} = 2\pi \cdot \frac{3}{4\pi} = \boxed{\frac{3}{2}}$$

EQ:
$$y = -8\sin\frac{3x}{2} + 3$$

Use the given graph to write the equation of the transformed Sine function in the following form: y = aSin(bx) + k

b: Total width =
$$\frac{21\pi}{4} - \frac{3\pi}{4} = \frac{18\pi}{4} = \frac{9}{2}$$

#cycles =
$$1\frac{1}{2} = \frac{3}{2}$$

Period =
$$\frac{\text{total width}}{\text{# cycles}} = \frac{\frac{9\pi}{2}}{\frac{3}{2}} = \frac{9\pi}{2} \cdot \frac{2}{3} = 3$$

$$b = \frac{2\pi}{\text{period}} = \frac{2\pi}{3\pi} = \frac{2}{3}$$

b =
$$\frac{2}{3}$$

Use the given graph to write the equation of the transformed Sine function in the following form: v = aSin(bx) + k

Equation:

$$b = \frac{2}{3}$$

$$y = 4\sin\frac{2x}{3} + 2$$

You can now complete the rest of Practice #26 Practice #26 will be due on Thursday, May 14 by 10:00pm