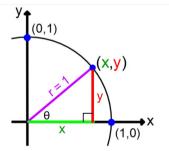
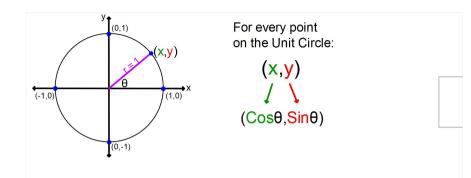
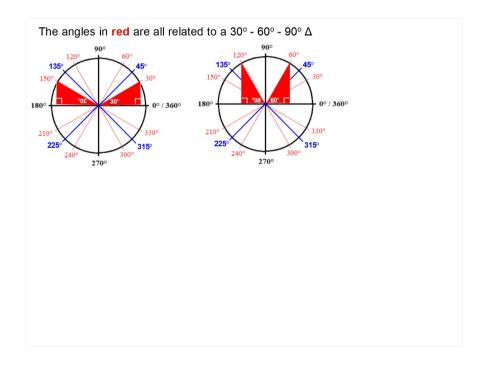

Wednesday, April 29, 2020


The Unit Circle

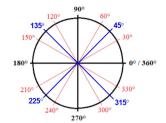
The Unit Circle: A circle on the x-y plane.

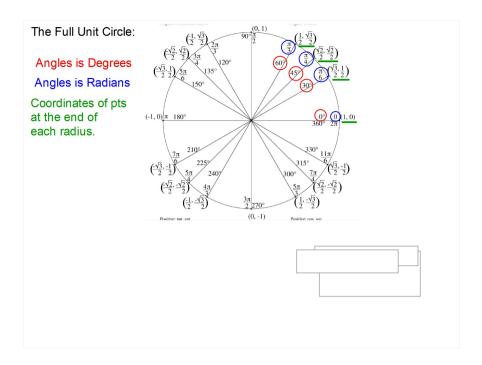
- A circle whose radius = 1 Unit.
- The center is at the origin.

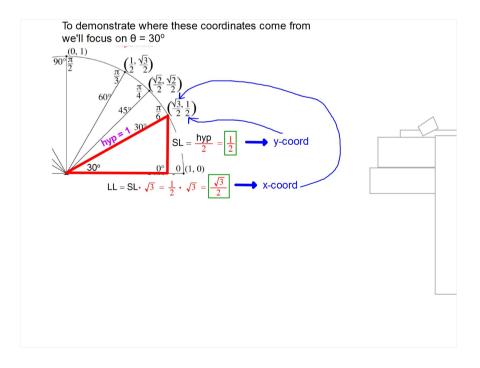

SOHCAHTOA


$$\sin\theta = \frac{Opp}{Hyp} = \frac{y}{1}$$
$$\sin\theta = y$$

$$\cos\theta = \frac{Adj}{Hyp} = \frac{X}{1}$$


$$\cos\theta = X$$


Unit Circle with degrees:



With the exception of the four axes every angle on the Unit Circle is related to one of the Special Right Triangles.

The angles in $\textcolor{red}{\textbf{blue}}$ are all related to a 45° - 45° - 90° Δ

With the exception of the four axes the coordinates of points on the Unit Circle come from

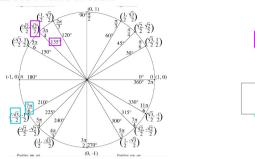
the legs of the Special Right Δ 's when the Hypotenuse = 1 (r=1).

To find $\cos\theta$ and $\sin\theta$ using the Unit Circle:

1. Locate θ on the Unit Circle

(you may have to use the concept of Coterminal angles so that θ is between 0° and 360° or 0 and $2\pi)$

- 2. $\cos\theta = x$ -coord at point corresponding to the location of θ
- 3. $\sin\theta = y$ -coord at point corresponding to the location of θ

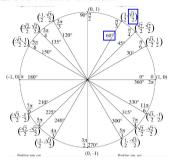

Use the Unit Circle to find the EXACT value of each.

1.
$$\sin 135^{\circ} = \frac{\sqrt{2}}{2}$$

y-coord at 135°

2.
$$\cos \frac{7\pi}{6} = \frac{-\sqrt{3}}{2}$$

x-coord at $\frac{7\pi}{6}$


You can now finish the first few problems of Practice #23.

Tomorrow we'll finish the rest of the material for Practice #23 and it will be due on Saturday, May 2 by 10:00pm.

Use the Unit Circle to find the EXACT value of each.

3.
$$\sin 780^\circ = \sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$780^{\circ} - 720^{\circ} = 60^{\circ}$$

