Monday, April 27, 2020

Location of Terminal Side. and Angles in Radians in Standard Position.

In what quadrant is the terminal side of this given angle?

Terminal side of 235° is in Quadrant III.

If the measure of the given angle isn't already between 0° & 360° you'll have to first find a coterminal angle such that 0° $\leq \theta \leq$ 360°

It's going to be helpful to know in which

Standard Position is located.

Quadrant the terminal side of an angle in

In what quadrant is the terminal side of this given angle? 2. $\theta = 480^{\circ}$ Coterminal: $\theta = 480 - 360 = 120^{\circ}$ Terminal side of 480° is in the same Quadrant as 120° 120 is between 90 and 180. Terminal side of 480° is in

Standard Position for angles in Radians.

Quadrant II.

The measure of each axes in radians, in a negative direction:

Give both a Positive and a Negative measure of this angle, in radians, which is in Standard Position.

Negative Measure:

$$\theta = -\left(\frac{3\pi}{2} - \frac{\pi}{3}\right)$$

$$=-\left(\frac{9\pi}{6}-\frac{2\pi}{6}\right)=\boxed{-\frac{7\pi}{6}}$$

Give both a Positive and a Negative measure of this angle, in radians, which is in Standard Position.

Positive Measure:

$$\theta = \frac{3}{3} \cdot \frac{\pi}{2} + \frac{\pi}{3} \cdot \frac{2}{3}$$

$$=\frac{3\pi}{6}+\frac{2\pi}{6}=\boxed{\frac{5\pi}{6}}$$

Ex 2: Give both a Positive and a Negative measure of this angle, in radians, which is in Standard Position.

Positive Measure:

$$\theta = \frac{5}{5} \cdot \frac{3\pi}{2} - \frac{\pi}{5} \cdot \frac{2}{2}$$

$$= \frac{15\pi}{10} - \frac{2\pi}{10} = \boxed{\frac{13\pi}{10}}$$

Ex 2: Give both a Positive and a Negative measure of this angle, in radians, which is in Standard Position.

Negative Measure:

$$\theta = -\left(\frac{\pi}{2} + \frac{\pi}{5}\right)$$

$$= -\left(\frac{5\pi}{10} + \frac{2\pi}{10}\right) = -\frac{7\pi}{10}$$

You should now be able to do the first half of Practice #22.

We'll work on the second half tomorrow.