Thursday, April 23, 2020

Coterminal Angles

and

Angles measured in Radians

Coterminal Angles Demonstration:

http://mr-cox.weebly.com/coterminal-angles.html

<u>Coterminal Angles</u>: Two or more angles in Standard Position that have the same terminal side.

They start and stop in the same spot, but are a different number of degrees.

Given $\theta = 72^{\circ}$

The following angles are coterminal with 72°:

Positive Coterminal \angle 's: 432°, 792°, 1152°, 1512°... $_{72^{\circ}+360^{\circ}}$ $_{+360^{\circ}}$ $_{+360^{\circ}}$ $_{+360^{\circ}}$ $_{+360^{\circ}}$

Negative Coterminal \angle 's: -288°, -648°, -1008°, -1368°... 72° - 360° - 360° - 360° - 360° - 360° - 360° When measuring in degrees you can find a coterminal angle of any given angle θ by adding or subracting 360° as many times as you want to or need to.

Coterminal Angle: θ ± any multiple of 360°

i

Find a positive and a negative coterminal angle for each given angle. $\theta = -610^{\circ}$

Pos:
$$-610 + 360 = -250^{\circ}$$

 $-250 + 360 = 110^{\circ}$

Find a positive and a negative coterminal angle for each given angle. $\theta = 940^{\circ}$

Pos:
$$940 + 360 = \boxed{1300^{\circ}}$$

or $940 - 360 = \boxed{580^{\circ}}$

Sometimes you have to add or subtract 360° more than once. Rather than add or subtract 360° over and over again you can add or subtract multiples of 360° to speed up the process:

Below are two of the more commonly used multiples of 360°;

$$\frac{360^{\circ} \text{ twice}}{2(360) = 720^{\circ}}$$

$$\frac{360^{\circ} \text{ three times}}{3(360)} = \frac{1080^{\circ}}{1080^{\circ}}$$

We usually like angles to be measured somewhere between 0° and 360° so that they are somewhere within one full turn of the initial side in a positive direction.

Use the concept of coterminal angles to find a coterminal angle in degrees such that $0^{\circ} \le \theta \le 360^{\circ}$

1.
$$\theta = 810^{\circ}$$

$$810 - 360 = 450^{\circ}$$

 $450 - 360 = 90^{\circ}$ OR $\frac{\text{use a multiple of } 360^{\circ}}{810 - 720} = 90^{\circ}$

Units used to measure angles: • Degrees

Radians

Use the concept of coterminal angles to find a coterminal angle in degrees such that $0^{\circ} \le \theta \le 360^{\circ}$

2.
$$\theta = -1300^{\circ}$$
 This angle is so large negative lets start with a multiple of $360^{\circ} \rightarrow 1080^{\circ}$ $-1300 + 1080 = -220$

One full turn around a circle measured in degrees = 360°

One full turn around a circle measured in radians = 2π radians

Therefore, the relationship between degrees and radians is:

$$\frac{2\pi}{2} = \frac{360^{\circ}}{2}$$

This can be simplified into: $\pi = 180^{\circ}$

 $\frac{\pi}{180^{\circ}}$ Conversion Factors:

Convert each angle into degrees. Round to the nearest tenth when needed.

1.
$$\frac{5\pi}{6} \cdot \frac{180^{\circ}}{\pi}$$

$$2. \quad \frac{3\pi}{2} \cdot \frac{180^{\circ}}{\pi}$$

 $\frac{180^{\circ}}{\pi}$

This relationship: $\pi = 180^{\circ}$

can be written as the following two conversion factors:

$$\frac{\pi}{180^{\circ}}$$

$$\frac{\pi}{180^{\circ}}$$
 or $\frac{180^{\circ}}{\pi}$

Conversion Factors:

$$\frac{\pi}{180^{\circ}}$$

$$\frac{180^{\circ}}{\pi}$$

Convert each angle into radians. Give answer in terms of π and as a simplified fraction.

1.
$$60^{8} \cdot \frac{\pi}{180^{8}}$$

2.
$$225^{\circ} \cdot \frac{\pi}{180^{\circ}}$$

$$=\frac{\pi}{3}$$

$$=\frac{5\pi}{4}$$

You can now do Practice #21