- 1. Find the EXACT value of x and y in each special right triangle.
- a)

- x =
- y =

x =

y =

2. Convert to degrees. Round to the nearest hundredth.

$$\theta = \frac{23\pi}{12}$$

3. Convert to radians. Leave answer as a reduced fraction in terms of π .

$$\theta = 220^{\circ}$$

4. For the given angles state both a positive and a negative coterminal angle. Give your answer in the same units as the original angle.

a)
$$\theta = -1900^{\circ}$$

b)
$$\theta = \frac{29\pi}{6}$$

POS:

NEG:

NEG:

5. Use the given reference angle to state both a pos and neg measure, in radians, for this angle, in Standard Position.

6. Find an angle such that $0^{\circ} \le \theta \le 360^{\circ}$ or $0 \le \theta \le 2\pi$, that is coterminal to the given angle. Give your answer in the same units as the original angle.

a)
$$\theta = 2360^{\circ}$$

b)
$$\theta = \frac{-38\pi}{5}$$

7. State the reference angle, in radians, for the given angle θ , in Standard Position.

$$\theta = \frac{7\pi}{6}$$

Monday, March 30, 2020

ANSWERS

1. Find the EXACT value of x and y in each special right triangle.

b)

$$Leg = \frac{HYP}{VZ} = \frac{1}{VZ} \cdot \frac{1}{Z}$$

$$X = Y = Leg = \frac{1}{Z}$$

2. Convert to degrees. Round to the nearest hundredth.

$$\theta = \frac{23\pi}{12} \cdot \frac{180^{\circ}}{77} = 345^{\circ}$$

3. Convert to radians. Leave answer as a reduced fraction in terms of π .

$$\theta = 220^{\circ}$$
, $\frac{\pi}{180^{\circ}} = \frac{1/\pi}{9}$

$$=\frac{1/\pi}{9}$$

4. For the given angles state both a positive and a negative coterminal angle. Give your answer in the same units as the original angle.

a)
$$\theta = -1900^{\circ}$$

260°

b)
$$\theta = \frac{29\pi}{6}$$
 POS:

NEG:

$$-1900^{\circ} -1900^{\circ} -360^{\circ}$$

$$+1080^{\circ} = 72260^{\circ}$$

$$-820^{\circ} 1080 = 3(360)$$

$$=\frac{297}{6} + \frac{127}{6}$$

$$=\frac{417}{6}$$

5. Use the given reference angle to state both a pos and neg measure, in radians, for this angle, in Standard Position.

$$\frac{pos}{\pi - \frac{\gamma}{4}} = \frac{4\pi}{4} - \frac{\pi}{4} = \frac{3\pi}{4}$$

$$\frac{NEG}{-(\pi + \sqrt{4})} = -(\frac{4\pi}{4} + \frac{\pi}{4})$$

$$= -\frac{5\pi}{4}$$

6. Find an angle such that $0^{\circ} \le \theta \le 360^{\circ}$ or $0 \le \theta \le 2\pi$, that is coterminal to the given angle. Give your answer in the same units as the original angle.

a)
$$\theta = 2360^{\circ}$$

$$= 1280^{\circ}$$

$$= 1280^{\circ}$$

$$= -1280^{\circ}$$

$$= 200^{\circ}$$

b)
$$\theta = \frac{-38\pi}{5}$$
 $+\frac{10\pi}{5}$
 $\frac{-28\pi}{5}$
 $\frac{10\pi}{5}$
 $\frac{10\pi}{5}$
 $\frac{10\pi}{5}$
 $\frac{10\pi}{5}$
 $\frac{10\pi}{5}$
 $\frac{10\pi}{5}$
 $\frac{10\pi}{5}$
 $\frac{10\pi}{5}$
 $\frac{10\pi}{5}$

7. State the reference angle, in radians, for the given angle θ , in Standard Position.

$$\theta = \frac{7\pi}{6}$$

$$A 1TT \longleftrightarrow 0/25$$

$$0 = \frac{7\pi}{6}$$

$$0 = \frac{7\pi}{6}$$

$$0 = \frac{7\pi}{6}$$

$$0 = \frac{7\pi}{6}$$

$$0 = \frac{3\pi}{2}$$

Reference
$$L\Theta$$

$$\frac{77}{6} - 77 = \frac{77}{6} - \frac{67}{6}$$

$$\Theta = \frac{7}{6}$$