- 1. Give both a positive and a negative coterminal angle for each. Give answer in degrees.
- a) $\theta = 840^{\circ}$

b) $\theta = -1105^{\circ}$

c) $\theta = 1450^{\circ}$

2. Give both a positive and a negative coterminal angle for each. Give answer in radians, in terms of π , and as a simplified fraction.

a)
$$\theta = \frac{11\pi}{3}$$

b)
$$\theta = \frac{-35\pi}{6}$$

c)
$$\theta = \frac{85\pi}{11}$$

3. Find an angle such that $0^{\circ} \le \theta \le 360^{\circ}$ that is coterminal with the given angle.

a)
$$\theta = 1217^{\circ}$$

b)
$$\theta = -953^{\circ}$$

4. Find an angle such that $0 \le \theta \le 2\pi$ that is coterminal with the given angle. Give answer in terms of π and as a simplified fraction.

a)
$$\theta = \frac{-11\pi}{6}$$

b)
$$\theta = \frac{26\pi}{9}$$

a) $\theta = 840^{\circ}$

THERE IS AN INFINITE # OF FOR COMMONS

POS 8

b) $\theta = -1105^{\circ}$

c) $\theta = 1450^{\circ}$

2. Give both a positive and a negative coterminal angle for each. Give answer in radians, in terms of π , and as a simplified fraction.

a)
$$\theta = \frac{11\pi}{3}$$

$$2\pi = \frac{6\pi}{3}$$

b)
$$\theta = \frac{-35\pi}{6}$$
 $\boxed{2\pi = \frac{12\pi}{6}}$

c)
$$\theta = \frac{85\pi}{11}$$

3. Find an angle such that $0^{\circ} \le \theta \le 360^{\circ}$ that is coterminal with the given angle.

a)
$$\theta = 1217^{\circ}$$

b)
$$\theta = -953^{\circ}$$

4. Find an angle such that $0 \le \theta \le 2\pi$ that is coterminal with the given angle. Give answer in terms of π and as a simplified fraction.

a)
$$\theta = \frac{-11\pi}{6}$$

$$2\pi = \frac{12\pi}{6}$$

$$\theta = \frac{26\pi}{9}$$

b)
$$\theta = \frac{26\pi}{9}$$
 $\sqrt{2\pi} = \frac{18\pi}{9}$