Monday, March 23, 2020

The Reciprocal Trig Functions

Still Sec 7-1

In triangle ABC, C is the right angle.

Given TanA =
$$\frac{11}{60}$$

Find the following as ratios:

$$Sin A = Cos B = Sin B =$$

In \triangle ABC, C is the right angle.

Given
$$\underline{\text{TanA}} = \underline{\frac{11}{60}} - \triangle$$

Step #1: draw and label \triangle ABC with the given information.

Step #2: find the missing side.

$$X = \sqrt{11^2 + 60^2} = 6$$

SOHCAHTOA

In \triangle ABC, C is the right angle.

Given TanA =
$$\frac{11}{60}$$

SOHCAHTOA

Now that you have the lengths of all three sides you can find all these trig ratios.

Find the following as ratios:

Cos A =
$$\frac{60}{61}$$
 Tan B = $\frac{60}{11}$

Sin A =
$$\frac{11}{61}$$
 Cos B = $\frac{11}{61}$ Sin B = $\frac{60}{61}$

Sine, Cosine, and Tangent are the three basic trigonometric functions, the building blocks of trig.

These three basic trig functions give rise to three other trig functions:

Reciprocal Trig Functions

Reciprocal Trig Functions

Secant

Cosecant

Cotangent

Just like with Sine, Cosine, and Tangent there are three letter abbreviations for the Reciprocal Trig Functions:

Secant:
$$\sec\theta = \frac{1}{\cos\theta} = \frac{Hyp}{Adj}$$

Cosecant:
$$\csc\theta = \frac{1}{\sin\theta} = \frac{Hyp}{Opp}$$

Cotangent:
$$Cot\theta = \frac{1}{Tan\theta} = \frac{Adj}{Opp}$$

Given $\triangle ABC$ find each of the following as ratios:

$$\frac{\sin A}{\sin A} = \frac{35}{37}$$

$$\frac{\cos A}{\sin A} = \frac{12}{37}$$

$$\frac{\tan A}{\sin A} = \frac{35}{12}$$

$$\frac{\sec A}{\sin A} = \frac{37}{12}$$

$$\frac{\sec A}{\sin A} = \frac{37}{12}$$

$$\frac{\csc A}{\sin A} = \frac{37}{12}$$

$$\frac{37}{12}$$

$$\frac{\csc A}{\sin A} = \frac{37}{12}$$

$$\frac{37}{12}$$

$$\frac{37$$

Given \triangle ABC find each of the following as ratios:

$$CscB = \frac{101}{20} \longrightarrow SINB = \frac{20}{101}$$

TanA =
$$\frac{99}{20}$$

SecA =
$$\frac{101}{20}$$
 \longrightarrow $\cos A = \frac{20}{101}$

$$CotB = \frac{99}{20} \rightarrow TanB = \frac{20}{99}$$

$$SinA = \frac{99}{101}$$

$$CosB = \frac{99}{101}$$

Since there are no Sec, Csc, or Cot buttons on your calculator how would you find Csc42°?

Use the definition of Csc:
$$Csc\theta = \frac{1}{Sin\theta}$$

therefore:
$$Csc42^\circ = \frac{1}{Sin42^\circ} = \frac{1}{1.99}$$

Find the value of each to the nearest hundredth.

$$Cot58^{\circ} = \frac{1}{Tan58^{\circ}} = 0.62$$

$$Sec83^{\circ} = \frac{1}{Cos83^{\circ}} = 8.21$$

$$Csc4^{\circ} = \frac{1}{Sin4^{\circ}} = 14.34$$

You can now finish Practice #6 which is posted on my blog.

