Bellwork Alg 2 Thursday, March 5, 2020

- 1. Use each percent change to find the base b of an exponential function: $y = a \cdot b^x$.
- a) 12.97% decrease

b) 128% increase

- 2. State the percent change that each exponential equation represents.
- a) $y = 2400(1.084)^x$

b) $y = 500(3.06)^x$

3. The number of cells of a certain bacteria doubles every 40 minutes. There were 32 cells at 10:30 am. Find the number of cells at 4:00 pm.

4. You invest \$15,000 in an account that pays 9% interest compounded monthly. Find the number of years it will take for the investment to reach \$100,000. Round to the nearest hundredth.

Bellwork Alg 2 Thursday, March 5, 2020

1. Use each percent change to find the base b of an exponential function: $y = a \cdot b^x$.

a) 12.97% decrease

b) 128% increase

b) $y = 500(3.06)^x$

$$100\% + 128\%$$

= 228%

2. State the percent change that each exponential equation represents.

a)
$$y = 2400(1.084)^{x}$$

$$1.084 \times 100$$

$$= 108.4 \%$$

$$-100 \%$$

$$18.4 \% \text{ in erease}$$

3. The number of cells of a certain bacteria doubles every 40 minutes. There were 32 cells at 10:30 am. Find the number of cells at 4:00 pm.

$$y = 32(2)^{x}$$

 $y = 32(2)^{8.25}$
 $= \sqrt{9742}$ cells

$$X = \pm 40 \text{min periods.}$$

10:30 am 70 4:00 pm

= $5 \frac{1}{2} \text{ hrs}$
 $\frac{100}{330 \text{ min}}$
 $\frac{1}{2} + 40$
 $\frac{1}{2} = 8 \cdot 25$

4. You invest \$15,000 in an account that pays 9% interest compounded monthly. Find the number of years it will take for the investment to reach \$100,000. Round to the nearest hundredth.

$$\frac{15.000}{15000} \left(1 + \frac{.09}{12}\right)^{12t} = 100,000$$

$$\frac{15000}{15000} = \frac{100}{15} = \frac{20}{3}$$

$$\log_{1.0075} \left(\frac{20}{3}\right) = 12t$$

$$12$$

$$t = 21.16 \text{ yrs}$$