NO CALCULATOR ON THIS PART

- 1. Match each graph with it's correct equation.
- a) $y = 8(2)^x$
- b) $y = 2(0.4)^x$
- c) $y = 4(2)^x$
- d) $y = 2(0.7)^x$
- e) $y = 4(5)^x$

- 2. Does each exponential equation equation represent Growth or Decay?
- a) $y = 450(\frac{13}{12})^x$
- b) $y = 18(1.0003)^x$
- c) $y = 9580(0.998)^x$
- 3. Rewrite each exponential equation as a logarithm.
- a) $7^x = 343$
- b) $10^5 = x$
- c) $x^7 = 1200$
- d) $e^x = 4.5$
- 4. Rewrite each logarithmic equation as an exponential.
- a) $\log_3 x = 4$
- b) $\log_x 25 = 2$
- c) $\log 400 = x$
- d) $\ln x = 10$

YOU CAN USE A CALCULATOR ON THIS PART

- 5. Use each percent change (increase or decrease) to find the base b of an exponential function.
- a) 1.85% increase
- b) 38% decrease
- c) 0.43% decrease
- d) 95% increase
- 6. Give the percent change (state if it's an increase or decrease) that each exponential equation models.
- a) $y = 1300(0.95)^x$

- b) $y = 2(1.0075)^x$
- 7. The population of a city was growing 3.8% each year throughout the late 1800's into the 1900's. In 1900 the population was 10,000.
- a) Find the population in 1914.
- b) Find the population in 1895.
- c) In how many years since 1900, to the nearest hundredth, will the population reach 25,000.
- 8. The value of a house in 2005 was \$129,000. The value of the house has been declining 5.25% each year.
- a) Find the value of the house in 2011.
- b) Find the value of the house in 2000.
- c) In how many years since 2005 will the house be worth \$50,000. Round to the nearest hundredth.
- 9. You invest \$15,000 in an account that earns 6% annual interest. Find the value of the account after 20 years using the given information.
- a) Interest is compounded monthly.
- b) Interest is compounded weekly.
- c) Interest is compounded continuously.

10. Solve each. Round to the nearest hundredth.

a)
$$5^x = 43$$

b)
$$10^x = 1501$$

c)
$$2(8)^{x-3} + 7 = 245$$
 d) $e^x = 11$ e) $\log_6 x = 3$

d)
$$e^{x} = 11$$

$$=) \log_6 x = 3$$

f)
$$3^{x+2} - 15 = 32$$

g)
$$2 \cdot e^{4x} + 1 = 99$$

h)
$$9 + \log_{x} 50 = 12$$

- 11. The half-life of a certain radio active substance is 40 minutes. If there are 500g of this substance at 8:00am find the amount remaining at 2:30pm the same day. Round to the nearest hundredth.
- 12. The number of cells of a certain bacteria doubles every 30 minutes. If there are 200 cells at 9:00 am find the number of cells at 4:45pm the same day.
- 13. The population of a city has been increasing exponentially each year since 2005. The population in 2007 was 26,460 and the population in 2008 was 27,783. Write an exponential equation to model this data. x = #since 2005.
- 14. Write the equation of an exponential equation that passes through these two points: (2,48) & (5,3072)

Review Sections 6-1 to 6-3 Spring 2020

1. a) C
$$y = 8(2)^x$$

b) B
$$y = 2(0.4)^x$$
 c) E $y = 4(2)^x$ d) A $y = 2(0.7)^x$ e) D $y = 4(5)^x$

c) E
$$y = 4(2)^x$$

d) A
$$v = 2(0.7)^x$$

- 2. a) Growth
- b) Growth
- c) Decay

3. a)
$$\log_7 343 = x$$
 b) $\log_x = 5$ c) $\log_x 1200 = 7$ d) $\ln 4.5 = x$

b)
$$\log x = 5$$

c)
$$\log_x 1200 = 7$$

d)
$$\ln 4.5 = 3$$

4. a)
$$3^{-} = x$$

b)
$$x^2 = 25$$

4. a)
$$3^4 = x$$
 b) $x^2 = 25$ c) $10^x = 400$ d) $e^{10} = x$

d)
$$e^{10} = x$$

5. a)
$$b = 1.0185$$

b)
$$b = 0.62$$
 c) $b = .9957$ d) $b = 1.95$

c)
$$b = .9957$$

d)
$$h = 1.95$$

- 6. a) 5% decrease b) 0.75% increase

7.
$$v = 10000(1.038)^x$$

7.
$$y = 10000(1.038)^x$$
 a) $10000(1.038)^{14} = 16856$ b) $10000(1.038)^{-5} = 8299$

h)
$$10000(1.038)^{-5} - 8200$$

c)
$$25000 = 10000(1.038)^x \rightarrow x = 24.57 \text{ yrs}$$

8.
$$y = 125,000(.9475)^x$$

8.
$$y = 125,000(.9475)^x$$
 a) $125,000(.9475)^6 = 90445.16

b)
$$125,000(.9475)^{-5} = $163686.90$$

b)
$$125,000(.9475)^{-5} = \$163686.90$$
 c) $50000 = 125000(.9475)^x \rightarrow x = 16.99 \text{ yrs}$

9. a) \$49,653.07 b) \$49,767.31 c) \$49,801.75

10. a)
$$x = 2.34$$

$$x = 3.18$$

b)
$$x = 3.18$$
 c) $x = 5.30$ d) $x = 2.4$

d)
$$x = 2.40$$
 e) $x = 216$

f)
$$x = 1.50$$

g)
$$x = 0.97$$
 h) $x = 3.68$

11)
$$x = 3.0$$

11. 0.58q 12. 9.268.190 cells

13.
$$y = 24,000(1.05)^x$$

14.
$$y = 3(4)^x$$