

Alg 2 PSAT/SAT PRACTICE

3-16-20

Questions 9 and 10 refer to the following information.

$$a = 1,052 + 1.08t$$

The speed of a sound wave in air depends on the air temperature. The formula above shows the relationship between *a*, the speed of a sound wave, in feet per second, and *t*, the air temperature, in degrees Fahrenheit (°F).

9

Which of the following expresses the air temparature in terms of the speed of a sound wave?

A)
$$t = \frac{a - 1,052}{1.08}$$

B)
$$t = \frac{a+1,052}{1.08}$$

C)
$$t = \frac{1,052 - a}{1.08}$$

D)
$$t = \frac{1.08}{a + 1,052}$$

10

At which of the following air temperatures will the speed of a sound wave be closest to 1,000 feet per second?

- A) -46°F
- B) -48°F
- C) -49°F
- D) -50°F

Questions 9 and 10 refer to the following information.

$$a = 1,052 + 1.08t$$

The speed of a sound wave in air depends on the air temperature. The formula above shows the relationship between a, the speed of a sound wave, in feet per second, and t, the air temperature, in degrees Fahrenheit (°F).

Which of the following expresses the air temparature in terms of the speed of a sound wave?

$$(A) t = \frac{a - 1,052}{1.08}$$

B)
$$t = \frac{a+1,052}{1.08}$$

C)
$$t = \frac{1,052 - a}{1.08}$$

D)
$$t = \frac{1.08}{a + 1,052}$$

At which of the following air temperatures will the speed of a sound wave be closest to 1,000 feet per second? a-value

a = 1,052 + 1,08+ -1,052 -1,052

