To solve for x in an exponential equation: $y = b^x$ we use the inverse operation called:

Logarithm

Changing from one form to the other:

Exponential Function: Logarith

<u>Logarithmic Function</u>:

y = b^x "Log, base b, of y equals x"
$$log_b y = x$$
The base is the base

The exponent is the answer

Another way to remember Logarithmic

Form:

Exponential Form:

$$x = y^z$$

becomes

Logarithmic Form:

$$z = Log_y x$$

Exponential Equation

Domain: Range: Any real number y>0 b>0, b**‡**1

Logarithmic Equation

$$log_b y = x$$

Domain:

x > 0

Range: Any real number

b: b>0, b#1

Example 1

Try It!

Page 150

1. Write the logarithmic form of y = 8

Example 2

Page 150

Try It!

2. a. What is the logarithmic form of $\frac{1}{3}$ = 343?

b. What is the exponential form of $log_{4}16 = 2?$

Rewrite each into logarithmic form.

1.
$$8^2 = x$$
 $\log_8 \times = 2$

1.
$$8^{2} = x$$
 $| 09_{8} \times = 2$
2. $49 = 450$ $| 09_{8} \times 450_{-} 3$
3. $94 = 77$ $| 19_{9} 77 = 10$

Rewrite each into exponential form.

1.
$$LOG_58 = x$$
 $5^{\times} = 8$

2.
$$LOG_3x = 12$$
 $3^{12} = X$

2.
$$LOG_3x = 12$$
 $3^{12} = X$
3. $LOG_x15 = 30$ $\chi^{30} = 30$

Write in Logarithmic Form:

 $10^{x} = 125$

 $LOG_{10}125 \rightarrow "LOG base 10 of 125" \rightarrow LOG125$

LOG₁₀ is called the Common Logarithm and is written without the 10.

The button on the calculator LOG is for Common Logarithms LOG₁₀

Solve by first rewriting in logarithmic form.

$$10^{x} = 200$$

 $\log_{10} 200 = X$ $\log_{10} 200 = X$ X = 2.30

Log_e is called the Natural Logarithm

and is written as In or LN

Solve by first rewriting in logarithmic form.

$$e^{2x} = 10$$

$$\frac{\ln 10 = \frac{1}{2}x}{x} = \frac{\ln 10}{x} = \frac{1}{1}$$

Solve by first rewriting in exponential form.

$$ln(x-1) = 5$$

$$e^{5} = X - 1$$
 $+1$
 $+1$
 $+1$
 $X = e^{5} + 1 = 149.41$

Evaluate.

$$8. \log 54 = 1.73$$

Evaluate each without a calculator:

(hint: think of each as an exponential)

1.
$$\log_4 1 = 0$$

1.
$$\log_4 1 = 0$$
 2. $\log_3 9 = 2$

$$4?=1 \rightarrow 4^{\circ}=1$$
 $3?=9 \rightarrow 3^{\circ}=9$

3.
$$\log_4(4) = 1$$

4.
$$\log_{25}5 = \frac{1}{2}$$

5.
$$\log_6(6^4) = 4$$

$$25^? = 5$$
 $\sqrt{25} = 5$

6.
$$\log_2(0.5) = -1$$

$$2^{?} = .5$$
 $2^{?} = \frac{1}{2} \rightarrow 2^{?} = \frac{1}{2}$

Example 3

Page 150

Try It!

3. What is the value of each logarithmic expression?

a.
$$\log_3(\frac{1}{81}) = -4$$

$$3^{?} = \frac{1}{81} \implies 3^{-4} = \frac{1}{81}$$

b. log7(-7) => un defined

$$7^{?} = -7 \implies \text{there is no power}$$
 $c.\log_5 5^9 = 9$
 f 7 that equals -7.

$$5^? = 5^9 \implies 5^9 = 5^9$$

Hwk #9 Sec 6-3

Page 319

Problems 23, 24, 29, 30, 34, 36, 45, 46, 48