Bellwork

Alg 2

Monday, February 24, 2020

1. Match each graph to its equation:

____i.
$$y = 3(.8)^x$$

ii.
$$y = 3(7)^x$$

___iii.
$$y = 8(7)^x$$

____iv.
$$y = 3(.3)^x$$

___v.
$$y = 3(2)^x$$

- 2. The number of a certain kind of bird in an area that is being developed has been decreasing 6.1% every five years. The bird population in 2007 was 12,000. Write an exponential equation and find the bird population in the following years:
- a. 1997

b. 2020

3. Rationalize the denominator. Give answer in simplified radical form.

$$\frac{12a^4b}{\sqrt[3]{16a^{11}b^4}}$$

4. Use these functions: $f(x) = x^2 - 3x$

$$g(x)=x-2$$

- a) Find f(g(x)). Simplify if possible.
- b) Find g(f(5))

Bellwork

Alg 2

Monday, February 24, 2020 Answers

1. Match each graph to its equation:

__A_i.
$$y = 3(.8)^x$$

D ii.
$$y = 3(7)^x$$

$$\underbrace{C}_{iii.} \quad y = 8(7)^{x}$$
The only $y - int = 8$

Biv.
$$y = 3(.3)^x$$
 Ev. $y = 3(2)^x$

$$E_{v. y = 3(2)^x}$$

B is steeper which means the smaller base

2. The number of a certain kind of bird in an area that is being developed has been decreasing 6.1% every five years. The bird population in 2007 was 12,000. Write an exponential equation and find the bird population in the following years:

$$X = \frac{-10}{5} = -2$$

$$2020 - 2007 = 13$$

 $X = \frac{13}{5} = 2.6$

3. Rationalize the denominator. Give answer in simplified radical form.

$$\frac{12a^4b}{\sqrt[3]{16a^{11}b^4}}$$

$$\frac{12a^{4}b^{3/4ab^{2}}}{\sqrt[3]{2^{6}a^{12}b^{6}}} = \frac{12a^{4}b^{3/4ab^{2}}}{2^{2}a^{4}b^{2}}$$

4. Use these functions: $f(x) = x^2 - 3x$

a) Find
$$f(g(x))$$
. Simplify if possible.

$$g(x)=x-2$$

b) Find g(f(5))

$$f(g(x)) = (x-2)^2 - 3(x-2)$$
$$= x^2 - 4x + 4 - 3x + 6$$

$$f(g(x)) = X^2 - 7x + 10$$

$$f(5) = (5)^{2} - 3(5) = 25 - 15 = 10$$

$$g(f(5)) = g(10)$$

$$= 10 - 2$$