Composite Functions: When two functions are combined into one function.

f(g(x)) is read as "f of g of x"

You are substituting the function g(x) into the function f(x).

Given these

two functions:

$$f(x) = 4x - 1$$

$$g(x) = 3x - 5$$

substitution turns these two functions into one composite function:

$$f(g(x)) \longrightarrow 4(3x - 5) - 1$$

$$= 12x-20-1$$

 $f(g(x)) = 12x-21$

The symbol for composite functions is: •

For example: $(f \circ g)$ means f(g(x)) you are substituting the function g(x) into f(x).

Given these two functions: $f(x) = 3x^2 - 7$ and g(x) = 2x+4

1. Find f(3)

$$f(3) = 3(3)^{2} - 7$$

$$= 3(9) - 7$$

$$= 27 - 7 = 20$$

3. Find f(g(3))

$$f(g(3)) = f(g(3))$$
= $f(0)$
= $3(10)^2 - 7$
= $3(100) - 7$
= $300 - 7$
= 293

$$g(3) = 2(3) + 4$$

= 6+4
= $\sqrt{0}$

4. Find g(f(3))

$$g(f(3)) = g(20)$$

= $2(20) + 4$
= $40 + 4$
= 44

EXAMPLE 4 Try It! Compose Functions

4. Let
$$f(x) = 2x - 1$$
 and $g(x) = 3x$. Identify the rules for the following functions.

a. $f(g(2))$

b. $f(g(x))$

$$= 2 (3x) - 1$$

$$= 6x - 1$$

$$= 6x - 1$$

$$= 6x - 1$$

= 2(6)-1=11

Page 133

EXAMPLE 5 Try It! Write a Rule for a Composite Function

5. Identify the rules for $f \circ g$ and $g \circ f$.

a.
$$f(x) = x^3$$
, $g(x) = x + 1$

b.
$$f(x) = x^2 + 1$$
, $g(x) = x - 5$

$$f \circ g = (x+1)^{3} = (x+1)(x+1)(x+1)$$

$$= (x^{2}+2x+1)(x+1)$$

$$= x^{3}+3x^{2}+3x+1 \times x^{3}+2x^{2}+1$$

$$= x^{3}+1$$

$$= x^{3}+1$$

Page 133

EXAMPLE 5

Try It! Write a Rule for a Composite Function

5. Identify the rules for $f \circ g$ and $g \circ f$.

a.
$$f(x) = x^3$$
, $g(x) = x + 1$

b.
$$f(x) = x^2 + 1$$
, $g(x) = x - 5$

$$f \circ g = (x-5)^2 + 1$$

= $x^2 - 10x + 25 + 1 = x^2 - 10x + 26$

Use these two functions:

$$f(x) = x + 4$$
 $g(x) = 3x^2 - 2$

1. Find f(g(x))

$$= (3x^{2}-2) + (3x^{2}+2)$$

3. Find g(f(-8))

first
$$f(-8) = -5 + 4 = -4$$

Then $g(-4) = 3(-4)^2 - 2$
 $3(16) - 2$
 $48 - 2 = 4$

2. Find $(g \circ f)(x)$

$$3(x+4)^{2}-2$$
 $3(x^{2}+8x+16)^{-2}$
 $3x^{2}+24x+46$

Use these two functions:

$$f(x) = 2x + 1$$
 $g(x) = \frac{5x}{6x - 8}$

1. Find f(g(x)). Simplify.

$$f(g(x)) = \frac{10x}{6x-6} + 1$$

$$= \frac{10x}{6x-6} + \frac{6x-6}{6x-6} - \frac{16x-8}{6x-8} - \frac{8x-4}{3x-4}$$

Use these two functions:

$$f(x) = 2x + 1$$
 $g(x) = \frac{5x}{6x - 8}$

2. Find g(f(x)). Simplify.

$$g(f(x)) = \frac{5(2x+1)}{6(2x+1)-f} = \frac{10x+5}{12x+6-8} = \frac{10x+5}{12x-2}$$

Hwk #6 Sec 5-5

Page 279 Due: Thursday

Problems: 14, 21, 23-26, 28

Domain of a composite function:

The domain for $(f \circ g)$ is:

The set of numbers x, that are in the domain g(x), as long as what comes out of g(x) is in the domain of f(x).

Given these functions:

$$g(x) = \sqrt{x-1} \qquad f(x) = \frac{1}{x-3}$$

$$x-1 \ge 0$$
Domain of $f(g(x))$ is

The domain of g(x) is $[1, \infty)$

You can't substitute the value of 3 into f(x). This means $g(x) \neq 3$ so you're not allowed to use the x value of 10 either since it will make g(x)=3

The combination of these two gives us the domain for f(g(x)):

$$[1,\infty)$$
 but x≠10 $[1,10)$ U(10,∞)

You have two coupons to use at a store, one gives you 10% off and the other gives you \$20 off. You are allowed to use both coupons for the same purchase.

- Does is matter which one you use first?
- If yes, which one should you use first?

$$\begin{array}{ccc}
10\% \text{ off} & \underline{\$20 \text{ off}} \\
P(x)=0.9x & T(x)=x-20 \\
x = \text{Original Price}
\end{array}$$

10% off first:
$$T(P(x)) = -90x - 20$$
 this is a lower price

\$20 off first:
$$P(T(x)) = .9(x-w) = .90x - 18$$

Therefore, it is better to use the 10% off coupon first followed by the \$20 off coupon.