Write the equations of the Horizontal Asymptotes, if any, for each Rational Function.

1.
$$y = \frac{x^3 + 7x^2 + 11x}{x^2 + 4x - 3}$$
 2. $y = \frac{8x^2 - 7x}{x^3 + 4x^2 + 9x - 1}$
NO HA

3.
$$y = \frac{2x^2 - 5x + 3}{x^2 - 6x - 10}$$

 $y = \frac{8x^4 + 3x^2 + 11x - 9}{4x^3 - 7x^2 - x^4 - 3}$
NO HA

x and y intercepts of Rational Functions:

Y-Intercepts: the result of replacing x with zero.

Find the y-intercepts of each function.

$$y = \frac{x^2 - 9x + 20}{x^2 + 7x + 10} = \frac{6^2 - 9(6) + 20}{6^2 + 7(6) + 10} = \frac{20}{10}$$
 y-int: $y = 2$

$$y = \frac{x^2 - 4}{2x^2 + 6x} = \frac{\delta^2 - 4}{2(0)^2 + 6(0)} = \frac{-4}{0}$$
 y-int: No y-int

Horizontal Asymptotes: Depends on the degrees of the Numerator and the Denominator

Case 1: Degree of the Numerator > Degree of the Denominator

HA: None

Case 2: Degree of the Numerator = Degree of the Denominator

HA: y = ratio of the Leading Coefficients

Case 3: Degree of the Denominator > Degree of the Numerator

HA: y = 0

In general, the y-intercepts of Rational Functions are the:

Ratio of the Constants

A graph can have at most ONE y-intercept.

X-Intercepts: the result of replacing y with zero.

This means you are setting the ratio equal to zero and solving for x.

Find the x-intercepts of this rational function:

$$y = \frac{x^{2} + 3x - 10}{x^{2} - 1} \qquad (\chi^{2} - 1) = \frac{\chi^{2} + 3x - 10}{\chi^{2} - 1} \cdot (\chi^{2} - 1)$$

$$0 = \chi^{2} + 3\chi - 10$$

$$0 = (\chi + 5)(\chi - 2)$$

$$\chi = -5, 2$$

$$\chi = -5, 2$$

Find the x-intercepts of this Rational Function

$$y = \frac{x^{2} - 6x + 8}{x^{2} + 4x + 3}$$

$$x^{2} - 6x + 8 = 0$$

$$(x - 4)(x - 2) = 0$$

$$x = 2, 4$$

$$x - 10T = 2, 4$$

The only way a fraction equals zero is if the NUMERATOR equals zero.

In general, the x-intercepts of a Rational Function are the:

Zeros of the numerator.

Exception to this rule?

Zeros of the numerator as long as they don't match zeros of the denominator, otherwise, they would be HOLES.

A graph can have more than one x-intercept.

find the x-intercepts of each function.

$$y = \frac{x^2 - 9x + 20}{x^2 + 7x + 10} = \frac{(x - 4)(x - 5)}{(x + 5)(x + 2)}$$
 $\chi = 4, 5$

x-int:

neither of these values are also zeros of the denominator so they are both x-int.

$$y = \frac{3x^2 + 5}{x^2 - 2x - 3} \qquad \text{No Real 3eros}$$

x-int:

$$2 \quad y = \frac{x^2 - 4}{2x^2 + 6x} = \frac{(x+2)(x-2)}{2x(x+3)}$$

x-int:

neither of these values are also zeros of the denominator so they are both x-int.

Hwk #42:

Due Tomorrow

Practice Sheet: Horizontal Asymptotes and x & y-intercepts

Topic 9/10 Topic Quiz FRIDAY

Let's put this all together.
Graph the following Rational Function showing:

- All asymptotes as dashed lines
- X & Y-intercepts, if any

or down very quickly. And usually,

• Correct behavior around each asymptote.

when graph goes up on one side of a VA it does down on the other side.