When simplifying radical expressions your answer should NOT have radicals in the denominator.

Radicals that can't be simplified are irrational numbers. We'd prefer not to have denominators that are irrational.

# To eliminate a radical from a denominator is called: Rationalizing the Denominator

$$\sqrt{2} \cdot \sqrt{2} = 2$$

Any square root multiplied by itself equals the radicand.

$$\sqrt[3]{2} \cdot \sqrt[3]{2} \neq 2$$
  $\sqrt[3]{2} \cdot \sqrt[3]{2} = \sqrt[3]{4}$ 

A cube root multiplied by itself will not necessarily eliminate the radical as it does with square roots.

### Simplify. Rationalize this denominator.

$$\frac{5}{\sqrt{3}} \cdot \frac{\cancel{13}}{\cancel{13}} = \frac{5\cancel{13}}{3}$$

#### Simplify. Rationalize this denominator.

$$\frac{9}{\sqrt{6a}} \cdot \frac{16a}{\sqrt{6a}}$$

$$= \frac{9\sqrt{6a}}{6a} = \frac{3\sqrt{6a}}{2a}$$

#### Simplify. Rationalize this denominator.

One method is to simplify the radical first then rationalize.



#### Simplify. Rationalize this denominator.

Another method is to pick the smallest radicand that will create perfect squares when multiplied by the original radicand.

$$\frac{2m^3}{\sqrt{18m^5n^3}} \frac{\sqrt{2mn}}{\sqrt{2mn}} = \frac{2m^3 \sqrt{2mn}}{\sqrt{6m^3n^2}} \frac{\sqrt{2mn}}{\sqrt{2mn}} = \frac{2m^3 \sqrt{2mn}}{\sqrt{2mn}} \frac{\sqrt{2mn}}{\sqrt{36m^6n^4}} = \frac{2m^3 \sqrt{2mn}}{\sqrt{2mn}} \frac{\sqrt{2mn}}{\sqrt{2mn}}$$

If both the numerator and denominator are under the same radical you could reduce the fraction first then see what needs to be rationalized.

$$\frac{\sqrt{6cd^2}}{\sqrt{21c^5d^9}} = \frac{\sqrt{2}}{\sqrt{7c^7d^7}}$$

$$= \frac{\sqrt{2}}{\sqrt{7c^7d^7}} \cdot \frac{\sqrt{7d}}{\sqrt{7d}} - \frac{\sqrt{14d}}{\sqrt{7c^7d^9}}$$

$$= \frac{\sqrt{2}}{\sqrt{7c^7d^7}} \cdot \frac{\sqrt{7d}}{\sqrt{7d}} - \frac{\sqrt{14d}}{\sqrt{7c^7d^9}}$$

## Simplify. Rationalize this denominator.

$$\frac{8y^{3}}{\sqrt{12x^{17}y^{21}}} \cdot \frac{\sqrt{3} \times y}{\sqrt{3} \times y} = \frac{8y^{3} \sqrt{3} \times y}{6 \times {}^{9}y''}$$

$$= \frac{4 \sqrt{3}xy}{36x'^{8}y^{22}} = \frac{4 \sqrt{3}xy}{3 \times {}^{9}y^{8}}$$

#### Simplify. Rationalize this denominator.

when rationalizing cube roots we need to create perfect cubes under the radical.

One method is to simplify the radical first then rationalize.

$$\frac{9}{\sqrt[3]{7c^4d^7}} = \frac{9}{cd^2\sqrt[3]{7cd}} \cdot \frac{\sqrt[3]{7^2c^2d^2}}{\sqrt[3]{7^2c^2d^2}} = \frac{9\sqrt[3]{49c^2d^2}}{cd^2\sqrt[3]{7cd}} = \frac{9\sqrt[3]{49c^2d^2}}{\sqrt[3]{7^3c^3d^3}} = \frac{9\sqrt[3]{49c^3d^2}}{\sqrt[3]{7^3c^3d^3}} = \frac{9\sqrt[3]{49c^3d^2}}{\sqrt[3]{7^3c^3d^3}} = \frac{9\sqrt[3]{49c^3d^2}}{\sqrt[3]{7^3c^3d^3}} = \frac{9\sqrt[3]{49c^3d^2}}{\sqrt[3]{7^3c^3d^3}}$$

Another method is to pick the smallest radicand that will create perfect cubes when multiplied by the original radicand.

$$\frac{9}{\sqrt[3]{7c^4d^7}} \cdot \frac{\sqrt[3]{7^2c^2d^2}}{\sqrt[3]{7^3c^6d^9}} = \frac{9\sqrt[3]{7^2c^2d^2}}{7\sqrt[3]{2^2c^2d^2}}$$

# Simplify. Rationalize this denominator.

$$\frac{10b^{2}}{\sqrt[3]{4a^{3}b}} \cdot \frac{\sqrt[3]{2b^{2}}}{\sqrt[3]{a}b^{2}} = \frac{|0b^{2}|\sqrt[3]{2b^{2}}}{\sqrt[3]{a}b^{2}}$$

$$= \frac{5b\sqrt[3]{2b^{2}}}{\sqrt[3]{a}b^{3}}$$

$$= \frac{5b\sqrt[3]{2b^{2}}}{\sqrt[3]{a}b^{2}}$$

#### Binomial radical expression.

# A binomial where one or both terms are radical expressions.

Examples: 
$$8 + 3\sqrt{7}$$

$$2\sqrt[3]{5} - \sqrt{6}$$

Find each product.

1. 
$$\sqrt{6}(5-2\sqrt{6})$$

2. 
$$2\sqrt[3]{4}(7+3\sqrt[3]{4})$$

$$(4-3\sqrt{5})(7+2\sqrt{5})$$

$$\frac{4-35}{28-2195} = -2-135$$

$$+215+815-6.5$$

$$=-30$$

What's going to happen here?

$$(7+2\sqrt{5})(6-4\sqrt{3})$$

Because the radicals are different you won't have any like terms when you expand it and the answer will end up with four terms.

$$(4 - \sqrt{3})(4 + \sqrt{3})$$

These two binomials are called CONJUGATES

$$\frac{4 - 3}{16 - 43} + 3 + 43 - 3 = 16 - 3 = 13$$

The product of binomial radical conjugates is always a constant.

#### Rationalizing a Binomial Denominator.

$$\frac{5}{2-\sqrt{3}}$$

multiply the numerator and denominator by the **conjugate** of the denominator.

$$\frac{5}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{5(2 + \sqrt{3})}{1} = \frac{5(2 + \sqrt{3})}{1} = \frac{5(2 + \sqrt{3})}{10 + 5(3)} = \frac{2 - \sqrt{3}}{10 + 5(3)} = \frac{2 - \sqrt{3}$$

Rationalize the denominator.

$$\frac{24}{7 + \sqrt{5}} \cdot \frac{7 - \sqrt{5}}{7 - \sqrt{5}} = \frac{24(7 - \sqrt{5})}{44}$$

$$= \frac{6(7 - \sqrt{5})}{11}$$

$$\frac{7}{49} + \frac{1}{25}$$

$$-\sqrt{5} - \frac{1}{5} - \frac{1}{5} = 44$$

Hwk #3 Sec 5-2

Page 253

Problems: 30, 32, 34, 36, 37, 39, 41, 44, 46, 47