Answer "CRITIQUE & EXPLAIN" a, b, and c in Student Companion on page 117.

1.
$$24^2 = 400 + 16 = 416$$

A. is Olivia's work in the first example correct? Explain your thinking.

$$24^{2} = (20 + 4)^{2} \quad \underline{BuT}$$

$$(20 + 4)^{2} + 20^{2} + 4^{2}$$

2.
$$3^6 = 9(27) = 270 - 27 = 243$$

B. is Olivia's work in the second example correct? Explain your thinking.

$$9(27) = 3^2(3^3)$$
 but $3^2(3^3) = 3^5$ Not 36

3.
$$\sqrt{625} = \sqrt{400} + \sqrt{225} = 20 + 15 = 35$$

C. is Olivia's work in the third example correct? Explain your thinking.

Properties of Exponents.

Property Zero as an Exponent

For every nonzero number $a, a^0 = 1$.

Property Negative Exponent

For every nonzero number a and integer n, $a^{-n} = \frac{1}{a^n}$.

Property Multiplying Powers With the Same Base

For every nonzero number a and integers m and $n, a^m \cdot a^n = a^{m+n}$.

Property

Raising a Power to a Power

For every nonzero number a and integers m and n, $(a^m)^n = a^{mn}$.

Property

Raising a Product to a Power

For every nonzero number a and b and integer n, $(ab)^n = a^n b^n$.

Answer "Habits of Mind" in the Student Companion at the bottom of page 117.

You know that $3^2 + 4^2 = 5^2$. Does $\sqrt{3^2} + \sqrt{4^2} = \sqrt{5^2}$? If not, how could you rewrite the equation using radicals so that it is true?

NO, 132 + 142 \$ 152 But if you square root both entire Sides of the original eg thon it will be true.

$$\sqrt{3^2 + 4^2} = \sqrt{5^2}$$
 $\sqrt{9 + 16} = \sqrt{25}$
 $\sqrt{25} = \sqrt{25}$

Property

Dividing Powers With the Same Base

For every nonzero number a and integers m and n, $\frac{a^m}{a^n} = a^{m-n}$.

Property

Raising a Quotient to a Power

For every nonzero number a and b and integer n, $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$.

Answer Example 1 "try It!" in the Student Companion at the top of page 118.

a.
$$\left(\frac{3}{32^{\frac{2}{5}}}\right)^{\frac{1}{2}}$$

$$= \frac{3^{\frac{2}{5}}}{(32^{\frac{2}{5}})^{\frac{1}{2}}}$$

$$= \frac{3^{\frac{2}{5}}}{(32^{\frac{2}{5}})^{\frac{1}{2}}}$$

$$= \frac{3^{\frac{2}{5}}}{(32^{\frac{2}{5}})^{\frac{1}{2}}}$$

$$= \frac{3^{\frac{2}{5}}}{(32^{\frac{2}{5}})^{\frac{1}{2}}}$$

$$= \frac{3^{\frac{2}{5}}}{(32^{\frac{2}{5}})^{\frac{1}{2}}}$$

$$= \frac{3^{\frac{2}{5}}}{(32^{\frac{2}{5}})^{\frac{1}{2}}}$$

b.
$$2a^{\frac{1}{3}}(ab^{\frac{1}{2}})^{\frac{2}{3}}$$

$$= 2a^{\frac{1}{3}}a^{\frac{2}{3}}(b^{\frac{1}{2}})^{\frac{2}{3}}$$

$$= 2a^{\frac{1}{3}}a^{\frac{2}{3}}b^{\frac{1}{3}}$$

$$= 2a^{\frac{1}{3}}a^{\frac{2}{3}}b^{\frac{1}{3}}$$

$$= 2a^{\frac{1}{3}}a^{\frac{2}{3}}b^{\frac{1}{3}}$$

$$= 2a^{\frac{1}{3}}a^{\frac{2}{3}}b^{\frac{1}{3}}$$

$$= 2a^{\frac{1}{3}}a^{\frac{2}{3}}b^{\frac{1}{3}}$$

Rewrite this expression using properties of exponents. Make sure your answer has no exponents that are negative or zero.

1.
$$\left(w^{\frac{-5}{6}}\right)^{2}$$
2. $\left(-8a^{12}\right)^{\frac{2}{3}}$

$$= \left(-8\right)^{\frac{2}{3}} \left(a^{12}\right)^{\frac{2}{3}}$$

$$= \left(3 - 8\right)^{2} a^{12} \left(a^{12}\right)^{\frac{2}{3}}$$

$$= \left(3 - 8\right)^{2} a^{12} \left(a^{12}\right)^{\frac{2}{3}}$$

$$= \left(-2\right)^{2} a^{8}$$

$$= \left(4a^{8}\right)^{2}$$

Hwk #2 Sec 5-2

Page 252

Problems 5, 6, 20-22, 26, 28, 29, 31