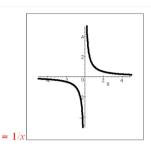
Graphs of the Reciprocal Function and its transformations

$$y = \frac{a}{X}$$

a is pos:

Branches are in the 1st and 3rd Quadrants

a is large: a>1 or a< -1


Branches are further from the asymptotes

Vertical Stretch Factor

a is neg:

Branches are in the 2nd and 4th Quadrants

a is small: -1<a<1 but not 0
Branches are closer to
the asymptotes
Vertical Shrink Factor

The Parent Reciprocal Function

$$y = \frac{1}{X}$$

√ertical Asymptotes:

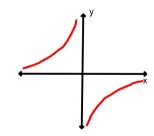
the y-axis EQ: x=0

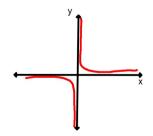
Horizontal Asymptotes:

the x-axis EQ: y=0

On your paper sketch what each would look like $\ensuremath{\mathsf{w}}\xspace/o$ using a calculator.

$$y = \frac{-20}{x}$$


Neg a: branches are in "Quadrants II and IV".


Large a: branches "far" from asymptotes.

Pos a: branches are in "Quadrants I and III".

Small a: branches "close" to asymptotes.

$$Y_1 = \frac{28.6}{x - 47} + 73$$

What do you think the Vertical and Horizontal Asymptotes of this function are?

What do these two calculator screens tell you?

As you move left on the graph y gets closer to 73 but just a little bit less (below).

As you move right on the graph y gets closer to 73 but just a little bit more (above).

The farther from the origin you are (both left and right) the closer the function gets to 73.....the graph flattens out and approaches the horizontal line y = 73

HA:
$$y = 73$$

$$Y_1 = \frac{28.6}{x - 47} + 73$$

The vertical asymptote is created by the value of x that makes this function undefined.

$$VA: x = 47$$

$$y = a(x-h)^2 + k \qquad \qquad y = a|x-h| + k$$

a: Vertical Stretch or Shrink Factor if a<0 there is an x-axis reflection (Upside Down)

h: Horizontal Translation

k: Vertical Translation

$$y = \frac{a}{x - h} + k$$

The larger a is... the farther the branches are from the asymptotes The smaller a is...the closer the branches are to the asymptotes

a: Vertical Stretch or Shrink Factor

if a<0 there is an x-axis reflection (Upside Down)

a>0: branches are in "Quadrants I & III" a<0: branches are in

"Quadrants II & IV"

Vertical Asymptote becomes: x = h

k: Vertical Translation

Horizontal Asymptote becomes: y = k

Write an equation for the translation of $y = \frac{3}{r}$ that has the given asymptotes.

1.
$$y = 4$$
 and $x = -3$

Moved 4 up

Moved 3 left

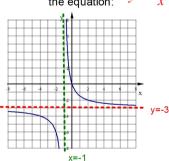
$$y = \frac{3}{x+3} + 4$$

2.
$$y = 0$$
 and $x = 9$

didn't move up or down Moved 9 right

$$y = \frac{3}{X - 9}$$

What are the two asymptotes for each reciprocal function?

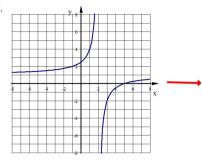

1.
$$y = \frac{30}{x-7} + 2$$
 2. $y = \frac{-0.3}{x+5} - 8$

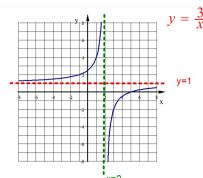
$$2. \ \ y = \frac{-0.3}{x+5} - 8$$

Moved 2 up Moved 7 right

VA:
$$\times = -5$$
 HA: $y = -8$

For 1 and 2, write the equation of each graph which are tranformations of the equation:



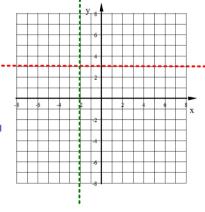

Moved 3 down and 1 left

Branches are in "Quadrants I and III" - NO x-axis reflection

EQ:
$$y = \frac{3}{x+1} - 3$$

2

Moved 1 up and 2 right

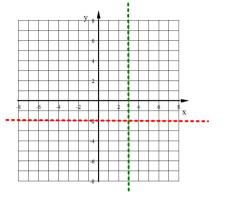

Branches are in "Quadrants II and IV" - x-axis reflection

EQ:
$$y = \frac{-3}{x-2} + 1$$

$$4. \ \ y = \frac{15}{x+2} + 3$$

Moved 3 up: HA: y = 3Moved 2 left: VA: x = -2

NO x-axis reflection: Branches in Quadrants I and III a is big - branches are far from asymptotes



For 3 and 4, sketch the graph of each. Show asymptotes as dashed lines.

3.
$$y = \frac{-0.1}{x-3} - 2$$

Moved 2 down: HA: y = -2Moved 3 right: VA: x=3

x-axis reflection: Branches in Quadrants II and IV a is small - branches are close to asymptotes

Write the equation of each transformation of the Parent Reciprocal Function y = 1/x

- 1. $\frac{5 \text{ units left}}{\text{I and III}}$, twice as tall, branches are in quadrants $\frac{-2}{x+5}$
- 2. 8 units up, half as tall, branches are in quadrants $\frac{\text{II and IV}}{\text{U}} = \frac{+0.5}{\text{X}} + 8$
- 3. 3 units right, 2 units down, branches are in guadrants $\frac{\text{II and IV}}{\text{IV}} = \frac{-1}{\text{X}-3} 2$

Hwk #40

Due Monday, January 6, 2020

Practice Sheet - Graphs of Reciprocal Functions