- 1. Write the equation of the inverse relation for each function.

- a) $f(x) = \frac{2x^3 3}{5}$ b) y = -4x 7 c) $y = 4 \cdot \sqrt{5x + 8} 9$ d) $y = 10\left(\frac{x + 8}{7}\right)^5$
- 2. Tell if the inverse relation of each graph or equation is a function or not.

c)
$$f(x) = -(x-1)^2(x+2)^2 + 5$$

- 3. Use the given information to find the value of each.

- a) $f(x) = \frac{x+4}{7}$ find $f^{-1}(2)$ b) $f(x) = \sqrt{\frac{2x+1}{5}}$ find $f^{-1}(3)$
- 4. Write the equation of this parabola in Vertex Form: $y = a(x h)^2 + k$

- 5. g(x) is a transformation of $f(x) = x^2$. Write the equation of g(x) if these are the tranformations that were applied:
- ·Half as tall
- ·Moved four units left and 7 units down.
- ·x-axis reflection.
- 6. g(x) is a transformation of f(x). If f(x) = -4f(x-5) 8 and g(x) = -12f(x+1) + 2 describe ALL of the transformations performed on f(x) in order to create g(x).
- 7. Use this function: $y = x^4 3x^3 4x^2 + 8x + 7$
- a) State the coordinates of all Absolute Max, Absolute Min, Relative Max, and Relative Min, if any. Round to the nearest hundredth as necessary.
- b) State all intervals of increasing and decreasing.
- 8. Determine if each function is ODD, EVEN, or NEITHER.
- a) $y = x^2 + 8x + 10$
- b) $y = \frac{4}{x^3 + x}$ c) $y = -\sqrt{x^4 10} + 3$
- 9. A rock climber is climbing a vertical rock wall. The following equation gives the climbers height (in feet) as a function of time (minutes): $h(t) = x^3 - 12x^2 + 35x + 15$. Find the rate of change on the following interval and describe what it means in this situation: $2 \le t \le 6$.

- 10. State the end behavior of each polynomial:
- a) $y = 6x^4 7x^3 + 8x 12$
- b) $y = -13x^5 42x^3 108x^2 99$
- c) $y = 4x(x+3)(x-8)^2(x+2)^3$
- d) $y = -3x^2(x-5)^2(2x+7)^3(x+4)$

11. Use the graph at the right.

- a) State intervals of concave up.
- b) State intervals of concave down.
- c) Suppose there is another x-intercept off the graph to the right. State the most likely degree of this polynomial and whether the leading coefficient would be positive or negative.
- 12. Write a possible equation for a polynomial of given degree and given number of real zeros.
- a) 6th degree with exactly 3 real distinct zeros.
- b) 7th degree polynomial with exactly 5 distinct real zeros.
- 13. Find all Complex solutions, both real and non-real, using the QUADRATIC FORMULA. Give all real solutions rounded to the nearest hundredth and simplify all imaginary solutions.

a)
$$4x^2 + 20x - 1 = 0$$

b)
$$x^2 - 4x + 29 = 0$$

14. Find ALL EXACT Complex solutions, both real and non-real, using FACTORING:

a)
$$2x^5 - 10x^3 - 72x = 0$$

b)
$$3x^3 - 2x^2 + 18x - 12 = 0$$
 c) $5x^5 - 80x = 0$

c)
$$5x^5 - 80x = 0$$

- 15. An object is shot into the air from the top of a 30 foot building. The following equation models the height of the object as a function of time. $h(t) = -16t^2 + 200t + 30$
- a) Find the time to reach it's maximum height.
- b) Find the maximum height.
- c) Find the time it takes for the object to return to the ground.
- d) Find the time it takes for the object to reach a height of 100 feet.
- 16. Find each product:
- a) (2+4i)(5-3i) b) (6+7i)(6-7i)
- 17. Find each quotient. a) $\frac{3x^4 8x^3 + 7x^2 + 4x 9}{x 2}$ b) $\frac{8x^3 + 22x^2 25x + 3}{4x 3}$

18. Use the fact 3 and -4 are zeros to find the remaining Complex roots, real and non-real, of this polynomial. $y = x^4 + x^3 - 6x^2 + 6x - 72$

- 19. Is x 2 a factor of $f(x) = 2x^3 + 3x^2 18x + 8$? Give a reason for your answer.
- 20. Solve each rational equation.

a)
$$\frac{5}{x+3} = \frac{2x}{x^2+5x+6} + \frac{7}{x+2}$$

a)
$$\frac{5}{x+3} = \frac{2x}{x^2+5x+6} + \frac{7}{x+2}$$
 b) $\frac{2x^2-6x-18}{x^2+3x+2} + \frac{4}{x+1} = \frac{x}{x+2}$

21. Simplify.

$$\frac{3x^2 + 18x}{x^2 + 5x - 6} \cdot \frac{x^3 - 9x^2 + 20x}{x^2 - 4x - 5} \div \frac{6x^2 - 24x}{x^2 - 1}$$

22. Simplify.

a)
$$\frac{\frac{2}{x+3} - \frac{3}{x^2 + x - 6}}{\frac{5}{x-2}}$$

b)
$$\frac{3x}{x^2 + 7x + 12} - \frac{4}{2x^2 + 4x - 16}$$

- 23. Find all points of discontinuity and state if they are holes or vertical asymptotes. $y = \frac{x^2 16}{2x^3 2x^2 24x}$
- 24. Write the equation of the Horizontal Asymptote of each, if any.

a)
$$y = \frac{6x^2 + 10x - 3}{2x^2 - 5x + 1}$$

b)
$$y = \frac{14x+3}{7x^2-4x-5}$$

b)
$$y = \frac{14x+3}{7x^2-4x-5}$$
 c) $y = \frac{8x^3+9x^2-4}{2x^2+3x+4}$

25. Write the equation of this graph which is a transformation of $y = \frac{2}{x}$

1. a)
$$f^{-1}(x) = \sqrt[3]{\frac{5x+3}{2}}$$

b)
$$f^{-1}(x) = \frac{x+7}{-4}$$

Alg 2 Final Exam Review Fall 2019 ANSWERS

1. a)
$$f^{-1}(x) = \sqrt[3]{\frac{5x+3}{2}}$$
 b) $f^{-1}(x) = \frac{x+7}{-4}$ c) $f^{-1}(x) = \frac{\left(\frac{x+9}{4}\right)^2 - 8}{5}$ d) $f^{-1}(x) = 7 \cdot \sqrt[5]{\frac{x}{10}} - 8$

d)
$$f^{-1}(x) = 7 \cdot \sqrt[5]{\frac{x}{10}} - 8$$

2. a) No a) Yes c) No

3. a)
$$f^{-1}(2) = 10$$
 b) $f^{-1}(3) = 22$

b)
$$f^{-1}(3) = 22$$

4.
$$y = -3(x+4)^2 + 10$$

5.
$$g(x) = -\frac{1}{2}(x+4)^2 - 7$$

- 6. 3 times taller, moved 6 units left, and 10 units up
- 7. a) Abs Max: None, Abs Min: (2.72, -6.47), Rel Max: (0.66, 9.86), Rel Min: (-1.12, -1.19)b) Increasing: $(-1.12, 0.66) \cup (2.72, \infty)$ Decreasing: $(-\infty, -1.12) \cup (0.66, 2.72)$
- 8. a) Neither
 - b) Odd c) Even
- 9. Rate of Change = $-9\frac{\text{ft}}{\text{min}}$ This represents the climber is moving down at a rate of 9 ft/min.

10. a)
$$(\nwarrow, \nearrow)$$
 b) (\nwarrow, \searrow) c) (\swarrow, \nearrow) d) (\swarrow, \searrow)

11. a)
$$(-\infty, -2) \cup (1, 4)$$

b)
$$(-2,1) \cup (4,\infty)$$

- c) 6th degree with a positive leading coefficient.
- 12. There are many possible answers. An example answer for each problem is given.

a)
$$v = (x+1)^2(x-2)^2(x+3)^2$$

a)
$$y = (x+1)^2(x-2)^2(x+3)^2$$
 b) $y = x^3(x+1)(x-2)(x+3)(x-4)$

13. a)
$$x = -5.05, 0.05$$
 b) $x = 2 \pm 5i$

b)
$$x = 2 \pm 5i$$

14. a)
$$x = 0, \pm 3, \pm 2i$$
 b) $x = \pm i\sqrt{6}, \frac{2}{3}$ c) $x = 0, \pm 2, \pm 2i$

(a)
$$x = \pm i\sqrt{6}, \frac{2}{3}$$

c)
$$x = 0, \pm 2, \pm 2i$$

- 15. a) 6.25 sec b) 655 ft c) 12.65 sec

- d) 0.36 and 12.14 sec

- 16. a) 22 + 14i b) 85 17. a) $3x^3 2x^2 + 3x + 10$ R = 11 b) $2x^2 + 7x 1$

- 18. $x = \pm i\sqrt{6}$
- 19. Yes x 2 is a factor of $f(x) = 2x^3 + 3x^2 18x + 8$ because the remainder is zero.

- 20. a) $x = -\frac{11}{4}$ b) x = 5 21. $\frac{x}{2}$ 22. a) $\frac{2x-7}{5(x+3)}$ b) $\frac{6x^2-16x-12}{2(x-2)(x+3)(x+4)}$
- 23. Points of discontinuity are x = 0, -3, 4 Holes: x = 4 VA: x = -3, 0

- 24. a) y = 3 b) y = 0 c) No HA 25. $y = \frac{-2}{r+3} 1$