x-intercepts of a graph are also called:

- Real Zeros
- Real Roots
- Real Solutions

Every polynomial equation has exactly no solutions, where n is the degree of the polynomial.

Some of these solutions may be imaginary so not all solutions can be found on a graph.

Y - intercepts -- All polynomials have exactly ONE y-intercept.

6. How many distinct real zeros can a cubic function have?

Find the distinct zeros

$$y = (x - 3)(x + 1)$$

 $x = 3, -1$

Find the distinct zeros

$$(x - 5)(x - 5)$$

x = 5 only

since both factors have the same zero there is only 1 distinct zero

"distinct"

is another way of saying different

Suppose you need to find a 3rd-degree polynomial function with x-intercepts of 82-7, and 3. Construct the equation of a polynomial with these x-intercepts.

This is only one of many possible answers.

Another answer could be: y = (2x - 16)(x+7)(x - 3)

Hwk #24

Due tomorrow

Agilemind - Topic 5 - Analyzing Polynomial Functions Exploring "Long-term Behavior and Real Zeros"

Guided Practice pages 1-11

You'll need to the formulas for Volume of a Cylinder and a Sphere first.

$$V=\pi r^2 h$$

$$V = 4\pi \frac{r^3}{3}$$

Suppose you need to find a 4th-degree polynomial function with the following distinct zeros of -3, -2, and 0. Construct the equation of a polynomial with these zeros.

Possible Answers:

$$y = (x+3)(x+2)(x-0)(x+3) = x(x+3)(x+2)$$

$$y = x(x+3)(x+2)$$

$$y = x^{2}(x+3)(x+2)$$

Answer Question #1 on SAS4

1. Focusing on distinct real zeros, which are indicated graphically as x-intercepts, find the maximum number of zeros that are possible for polynomials of each degree.

Degree	0	1	2	3	4	5	6
Maximum number of zeros	0	L	2	3	4	5	6

Agilemind - Topic 5 - Analyzing Polynomial Functions

Agilemind website:

Exploring "Higher degree polynomials"

page 3 (answer to previous question)

Agilemind - Topic 5 - Analyzing Polynomial Functions Answer Question #2 on SAS4

Agilemind website: Exploring "Higher degree polynomials" page 2

Agilemind - Topic 5 - Analyzing Polynomial Functions

Agilemind website:

Exploring "Higher degree polynomials" page 4

Agilemind - Topic 5 - Analyzing Polynomial Functions

Answer Question #3 on SAS4

some possible answers are given on:

Agilemind website:
Exploring "Higher degree polynomials"
page 4

7. Fill in the blanks to complete the statements.

negative	even	odd	positive		
If a polynomial has odo	degree, the "ends" of	its graph point in opposite d	irections. If the leading		
coefficient is Pos	, the left "end" of the graph	points down and the right "e	nd" of the graph points		
up. If the leading coefficient is Neg , the left "end" of the graph points up and the right "end" of the					
graph points down.					
If a polynomial has eve	degree, the "ends" of	its graph point in the same o	firection. If the leading		
coefficient is Neg, both "ends" of the graph point down. If the leading coefficient is Pos, both "ends" of the graph point up.					
both ends of the graph p	onit up.				

Agilemind - Topic 5 - Analyzing Polynomial Functions

Answer Question #7 on SAS4

Agilemind website:

Exploring "Higher degree polynomials" page 6

Agilemind - Topic 5 - Analyzing Polynomial Functions

Answer Question #8 on SAS4

Agilemind website:

Exploring "Higher degree polynomials" page 8

8	3. Fill in the blanks to complete some generalizations about the relationship between the
	degree of a polynomial and the number of zeros, extreme values, and inflection points it
	could have.

where $a_n \neq 0$. If n is even, the polynomial can have no fewer than 0 and no more than n real zeros. If n is odd, the polynomial can have no fewer than 1 and no more than n real zeros. If n is even, the polynomial can have no fewer than 1 and no more than $n-1$ extreme (maximum or minimum) values. If n is odd, the polynomial can have no fewer than $n-1$ extreme (maximum or minimum) values. If n is even, the polynomial can have no fewer than $n-1$ extreme (maximum or minimum) values. If n is even, the polynomial can have no fewer than $n-1$ inflection points. If $n > 1$ n is odd, the polynomial can have no fewer				
than n real zeros. If n is odd, the polynomial can have no fewer than n and no more than n real zeros. If n is even, the polynomial can have no fewer than n and no more than n extreme (maximum or minimum) values. If n is odd, the polynomial can have no fewer than n and no more than n extreme (maximum or minimum) values. If n is even, the polynomial can have no fewer than n and no more than n inflection points. If n is odd, the polynomial can have no fewer	Consider the n th degree nonlinear polynomial $P(x)=a_nx^n+a_{n-1}x^{n-1}++a_1x^1+a_0$ where $a_n\neq 0$. If n is even, the polynomial can have no fewer than $\boxed{0}$ and no more			
and no more than $n-1$ extreme (maximum or minimum) values. If n is odd, the polynomial can have no fewer than $n-1$ extreme (maximum or minimum) values. If n is even, the polynomial can have no fewer than $n-1$ and no more than $n-2$ inflection points. If $n>1$ n is odd, the polynomial can have no fewer	than n real zeros. If n is odd, the polynomial can have no fewer than n and no			
polynomial can have no fewer than 0 and no more than $n-1$ extreme (maximum or minimum) values. If n is even, the polynomial can have no fewer than 0 and no more than $n-2$ inflection points. If $n>1$ n is odd, the polynomial can have no fewer	more than \bigcap real zeros. If n is even, the polynomial can have no fewer than \bigcap			
or minimum) values. If n is even, the polynomial can have no fewer than $n = 1$ and no more than $n = 2$ inflection points. If $n > 1$ n is odd, the polynomial can have no fewer	and no more than $n-1$ extreme (maximum or minimum) values. If n is odd, the			
more than $n-2$ inflection points. If $n>1$ n is odd, the polynomial can have no fewer	polynomial can have no fewer than 0 and no more than n-1 extreme (maximum			
	or minimum) values. If n is even, the polynomial can have no fewer than \bigcirc and no			
than 1 and no more than $n-2$ inflection points.	more than $n-2$ inflection points. If $n > 1$ n is odd, the polynomial can have no fewer			
	than 1 and no more than n-2 inflection points.			

Agilemind website:

Exploring "Higher degree polynomials" page 9

answer to previous question

Agilemind - Topic 5 - Analyzing Polynomial Functions

Answer Question #9 on SAS4

Which function could represent the given graph?

Answer can't be B because the graph shows a positive odd end behavior but the equation

in B is a negative odd polynomial.

Both C and D are possible because the have the correct end behavior (pos odd) and correct y-int (+6). Looking at the graph you can see that is has an x-int of +1. Replace x with 1 in the equations y should equal zero for 1 to be an x-intercept. For D f(1) = 3 and for C f(1) = 0. Therefore, The answer is C.

Hwk #25:

Due tomorrow too!

Agilemind website:

Topic 5: Analyzing Polynomial Functions

More Practice 4-13

Agilemind quiz Tomorrow 10 questions

NO caclulator